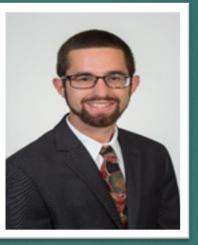


Temperature-Sensitive Medication Storage for Natural Disasters

Department of Mechanical Engineering

Presented By: Jesse Arrington

Meet the Team


Jesse Arrington Design Engineer

Team & Sponsor

Christian Torpey Technical Engineer

Targets & Metrics

Matthew Israel Thermal Process Engineer

Generation

Tyler White Energy Systems Engineer

Selection

Timothy Willms Production Engineer

Department of Mechanical Engineering

Background

Presented By: Jesse Arrington

Bill of Materials

2

Prototyping

Sponsor

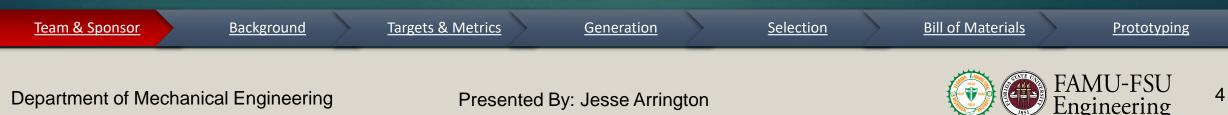
Tom Derzypolski President of BowStern Marketing

- Florida State University graduate
- Bachelor's in Communications with an emphasis on Public Relations

Targets & Metrics


- Decorated veteran of the U.S. Navy
- > Member of:
 - Florida Public Relations Association
 - > American Advertising Federation
 - > Veterans of Foreign Wars

Background

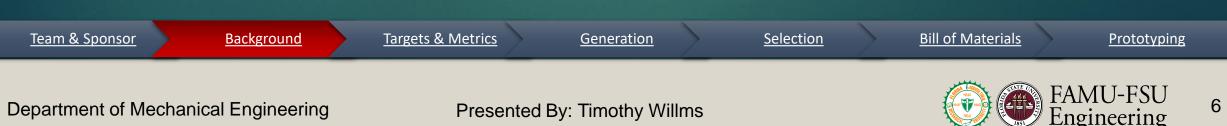

Team & Sponsor

Generation

Overview

- Project Brief Summary
- Targets and Metrics
- Concept Generation
- Concept Selection
- > Bill of Materials
- Current Prototyping Efforts

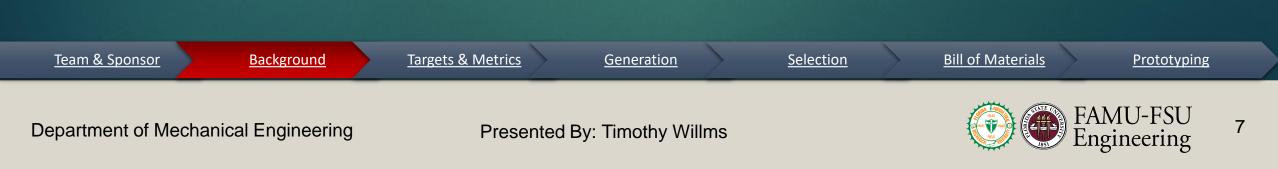
Project Brief Summary


Department of Mechanical Engineering

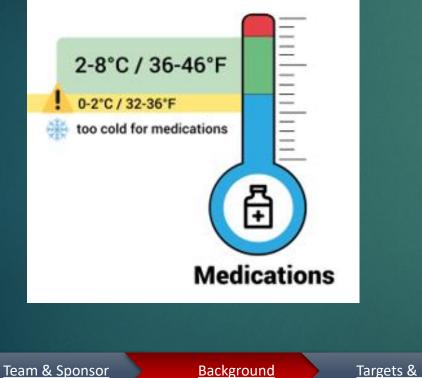
Presented By: Jesse Arrington

Objective

The objective of this project is to provide an affordable and accessible means to keep temperature sensitive medications cool during natural disasters and the days following.



Motivation


Puerto Ricans were out of power for an average of 84 days following Hurricane Maria

- > 46% spike in diabetes related deaths
- Inability to keep insulin medication chilled

Background Information

	Medication	Storage Temperature Range (°C)
	Insulin	2 - 8°C
	Penicillin	3 - 15°C
	Byetta	3 - 15°C
	Victoza	3 - 15°C
	Pulmozyme Nebuliser	2 - 8°C
Targets & N	<u>Aetrics</u> <u>Generation</u> <u>Selection</u>	on <u>Bill of Materials</u> <u>Prototyping</u>

Department of Mechanical Engineering

Presented By: Timothy Willms

* Medicine storage				
	* Height = 50mm	Transfer power	Voltage	120V/240V outlets
internal volume	Diameter = 22mm	Generate power	Voltage	1.5V, 9V, 3V, 3.7V
Wall thickness	Thickness <= 0.05m	Store power	Voltage	1.5V, 9V, 3V, 3.7V
Total external size	Volume = 0.0625 - 0.25m³	* Convert power	* Voltage	* 1.5V, 9V, 3V, 3.7V
* Dimensions for device	* Height = 50mm	* Supply power	* Voltage	* 1.5V, 9V, 3V, 3.7V
that removes the medicatio Diameter = 22mm	-	* Sense temperature	* Medication temperature	* T = 3.5-6 °C
n from the device body		* Rectify temperature	* Medication temperature	* T = 3.5 or 6 °C
* Number of medication * Vial number = 0		* Container cooling time	* Time <= 15 minutes	
broken			* Cooling rate	50.97 mW/°C
Impact resistance	Force = 27N	Initiate cooling system	On/Off	On
The user is notified	Yes	Halt cooling system	On/Off	On
whether the device is operating properly		* Prevent heat transfer	* Net heat transfer rate going into and out	* ∆Qdot = 0W
			of the container	
Background Targe	ets & Metrics Gen	eration <u>Select</u>	ion <u>Bill of Materi</u>	als <u>Prototy</u>
	Total external size * Dimensions for device that removes the medication n from the device body * Number of medication vials broken Impact resistance The user is notified whether the device is operating properly	Total external sizeVolume = 0.0625 - 0.25m³* Dimensions for device that removes the medication n from the device body* Height = 50mm Diameter = 22mm* Number of medication vials broken* Vial number = 0Impact resistanceForce = 27NThe user is notified whether the device is operating properlyYes	Total external sizeVolume = 0.0625 - 0.25m³Store power* Dimensions for device that removes the medication n from the device body* Height = 50mm Diameter = 22mm* Supply power* Number of medication vials broken* Vial number = 0* Rectify temperatureImpact resistanceForce = 27NInitiate cooling systemThe user is notified whether the device is operating properlyYesHalt cooling system	Total external sizeVolume = 0.0625 - 0.25m³Store powerVoltage* Dimensions for device that removes the medication n from the device body* Height = 50mm Diameter = 22mm* Convert power* Voltage* Number of medication vials broken* Vial number = 0* Medication temperature* Number of medication vials broken* Vial number = 0* Container cooling timeImpact resistanceForce = 27NInitiate cooling systemOn/OffThe user is notified whether the device is operating properlyYesInitiate cooling systemOn/Off* Prevent heat transfer rate going into and out of the container* Net heat transfer rate going into and out of the container

Department of Mechanical Engineering

Presented By: Timothy Willms

Function	Metric	Target	Function	Metric	Target
* Receive Medication	* Medicine storage	* Height = 50mm	Transfer power	Voltage	120V/240V outlets
	internal volume	Diameter = 22mm	Generate power	Voltage	1.5V, 9V, 3V, 3.7V
	Wall thickness	Thickness <= 0.05m	Store power	Voltage	1.5V, 9V, 3V, 3.7V
	Total external size	Volume = 0.0625 - 0.25m³	* Convert power	* Voltage	* 1.5V, 9V, 3V, 3.7V
* Eject Medication	* Dimensions for device	* Height = 50mm	* Supply power	* Voltage	* 1.5V, 9V, 3V, 3.7V
		Diameter = 22mm	* Sense temperature	* Medication temperature	* T = 3.5-6 °C
	n from the device body		* Rectify temperature	* Medication temperature	* T = 3.5 or 6 °C
* Secure Medication	* Number of medication vials	* Vial number = 0		* Container cooling time	* Time <= 15 minutes
	broken			* Cooling rate	50.97 mW/°C
	Impact resistance	Force = 27N	Initiate cooling system	On/Off	On
Convey device status	The user is notified	Yes	Halt cooling system	On/Off	On
	whether the device is operating properly		* Prevent heat transfer	* Net heat transfer rate going into and out	* ΔQdot = 0W
				of the container	
Team & Sponsor	Background Targ	ets & Metrics Ger	neration <u>Select</u>	ion <u>Bill of Materi</u>	als <u>Prototyping</u>

Department of Mechanical Engineering

Presented By: Timothy Willms

Tea

Tear

Function	Metric	Target
Receive Medication	Medicine storage internal volume	Height = 50mm Diameter = 22mm
Eject Medication	Dimensions for device that removes the medication from the device body	Height = 50mm Diameter = 22mm
Secure Medication	Number of medication vials broken	Vial number = 0
Convert Power	Voltage	1.5V, 9V, 3V, 3.7V
Supply Power	Voltage	1.5V, 9V, 3V, 3.7V
Sense Temperature	Medication Temperature	T = 3.5-6 °C
Rectify Temperature	Medication Temperature	T = 3.5-6 °C
	Container Cooling Time	Time<=15mins
	Cooling Rate	50.97 mW/°C
Prevent Heat Transfer	Net heat transfer rate going into and out of the container	ΔQdot = 0W
Sponsor <u>Background</u> <u>Targets</u>	& Metrics Generation Selec	tion Bill of Materials Proto

Tear

Function	Metric	Target
Receive Medication	Medicine storage internal volume	Height = 50mm Diameter = 22mm
Eject Medication	Dimensions for device that removes the medication from the device body	Height = 50mm Diameter = 22mm
Secure Medication	Number of medication vials broken	Vial number = 0
Convert Power	Voltage	1.5V, 9V, 3V, 3.7V
Supply Power	Voltage	1.5V, 9V, 3V, 3.7V
Sense Temperature	Medication Temperature	T = 3.5-6 °C
Rectify Temperature	Medication Temperature	T = 3.5-6 °C
	Container Cooling Time	Time<=15mins
	Cooling Rate	50.97 mW/°C
Prevent Heat Transfer	Net heat transfer rate going into and out of the container	ΔQdot = 0W
Sponsor Background Targets	& Metrics Generation Selec	tion <u>Bill of Materials</u> <u>Proto</u>

Tea

Function	Metric	Target
Receive Medication	Medicine storage internal volume	Height = 50mm Diameter = 22mm
Eject Medication	Dimensions for device that removes the medication from the device body	Height = 50mm Diameter = 22mm
Secure Medication	Number of medication vials broken	Vial number = 0
Convert Power	Voltage	1.5V, 9V, 3V, 3.7V
Supply Power	Voltage	1.5V, 9V, 3V, 3.7V
Sense Temperature	Medication Temperature	T = 3.5-6 °C
Rectify Temperature	Medication Temperature	T = 3.5-6 °C
	Container Cooling Time	Time<=15mins
	Cooling Rate	50.97 mW/°C
Prevent Heat Transfer	Net heat transfer rate going into and out of the container	ΔQdot = 0W
Sponsor <u>Background</u> <u>Targets</u>	& Metrics <u>Generation</u> <u>Selec</u>	tion Bill of Materials Proto

Department of Mechanical Engineering

Tea

Presented By: Timothy Willms

Medicine storage internal volume Dimensions for device that removes the medication from the device body Number of medication vials broken	Height = 50mm Diameter = 22mm Height = 50mm Diameter = 22mm Vial number = 0
from the device body	Diameter = 22mm
Number of medication vials broken	Vial number = 0
	viai number = 0
Voltage	1.5V, 9V, 3V, 3.7V
Voltage	1.5V, 9V, 3V, 3.7V
Medication Temperature	T = 3.5-6 °C
Medication Temperature	T = 3.5-6 °C
Container Cooling Time	Time<=15mins
Cooling Rate	50.97 mW/°C
Net heat transfer rate going into and out of the container	ΔQdot = 0W
Metrics <u>Generation</u> <u>Select</u>	tion Bill of Materials Protot
	Voltage Medication Temperature Medication Temperature Container Cooling Time Cooling Rate Net heat transfer rate going into and out of the container

Department of Mechanical Engineering

Tear

Presented By: Timothy Willms

Function	Metric	Target
Receive Medication	Medicine storage internal volume	Height = 50mm Diameter = 22mm
Eject Medication	Dimensions for device that removes the medication from the device body	Height = 50mm Diameter = 22mm
Secure Medication	Number of medication vials broken	Vial number = 0
Convert Power	Voltage	1.5V, 9V, 3V, 3.7V
Supply Power	Voltage	1.5V, 9V, 3V, 3.7V
Sense Temperature	Medication Temperature	T = 3.5-6 °C
Rectify Temperature	Medication Temperature	T = 3.5-6 °C
	Container Cooling Time	Time<=15mins
	Cooling Rate	50.97 mW/°C
Prevent Heat Transfer	Net heat transfer rate going into and out of the container	ΔQdot = 0W
ponsor <u>Background</u> <u>Targets</u>	& Metrics Generation Selec	tion Bill of Materials Proto

Tea

Function	Metric	Target
Receive Medication	Medicine storage internal volume	Height = 50mm Diameter = 22mm
Eject Medication	Dimensions for device that removes the medication from the device body	Height = 50mm Diameter = 22mm
Secure Medication	Number of medication vials broken	Vial number = 0
Convert Power	Voltage	1.5V, 9V, 3V, 3.7V
Supply Power	Voltage	1.5V, 9V, 3V, 3.7V
Sense Temperature	Medication Temperature	T = 3.5-6 °C
Rectify Temperature	Medication Temperature	T = 3.5-6 °C
	Container Cooling Time	Time<=15mins
	Cooling Rate	50.97 mW/°C
Prevent Heat Transfer	Net heat transfer rate going into and out of the container	ΔQdot = 0W
Sponsor <u>Background</u> <u>Targets</u>	<u>& Metrics</u> <u>Generation</u> <u>Selec</u>	tion Bill of Materials Proto

Tea

Function	Metric	Target
Receive Medication	Medicine storage internal volume	Height = 50mm Diameter = 22mm
Eject Medication	Dimensions for device that removes the medication from the device body	Height = 50mm Diameter = 22mm
Secure Medication	Number of medication vials broken	Vial number = 0
Convert Power	Voltage	1.5V, 9V, 3V, 3.7V
Supply Power	Voltage	1.5V, 9V, 3V, 3.7V
Sense Temperature	Medication Temperature	T = 3.5-6 °C
Rectify Temperature	Medication Temperature	T = 3.5-6 °C
	Container Cooling Time	Time<=15mins
	Cooling Rate	50.97 mW/°C
Prevent Heat Transfer	Net heat transfer rate going into and out of the container	ΔQdot = 0W
Sponsor <u>Background</u> <u>Targets</u>	& Metrics <u>Generation</u> <u>Selec</u>	tion Bill of Materials Proto

Tea

Function	Metric	Target			
Receive Medication	Medicine storage internal volume	Height = 50mm Diameter = 22mm			
Eject Medication	Dimensions for device that removes the medication from the device body	Height = 50mm Diameter = 22mm			
Secure Medication	Number of medication vials broken	Vial number = 0			
Convert Power	Voltage	1.5V, 9V, 3V, 3.7V			
Supply Power	Voltage	1.5V, 9V, 3V, 3.7V			
Sense Temperature	Medication Temperature	T = 3.5-6 °C			
Rectify Temperature	Medication Temperature	T = 3.5-6 °C			
	Container Cooling Time	Time<=15mins			
	Cooling Rate	50.97 mW/°C			
Prevent Heat Transfer	Net heat transfer rate going into and out of the container	ΔQdot = 0W			
Sponsor <u>Background</u> <u>Targets a</u>	& Metrics <u>Generation</u> <u>Selec</u>	tion Bill of Materials Prote			

Tea

Function	Metric	Target			
Receive Medication	Medicine storage internal volume	Height = 50mm Diameter = 22mm			
Eject Medication	Dimensions for device that removes the medication from the device body	Height = 50mm Diameter = 22mm			
Secure Medication	Number of medication vials broken	Vial number = 0			
Convert Power	Voltage	1.5V, 9V, 3V, 3.7V			
Supply Power	Voltage	1.5V, 9V, 3V, 3.7V			
Sense Temperature	Medication Temperature	T = 3.5-6 °C			
Rectify Temperature	Medication Temperature	T = 3.5-6 °C			
	Container Cooling Time	Time<=15mins			
	Cooling Rate	50.97 mW/°C			
Prevent Heat Transfer	Net heat transfer rate going into and out of the container	ΔQdot = 0W			
Sponsor Background Targets	& Metrics Generation Selec	tion Bill of Materials Proto			

Department of Mechanical Engineering

<u>Tear</u>

Presented By: Timothy Willms

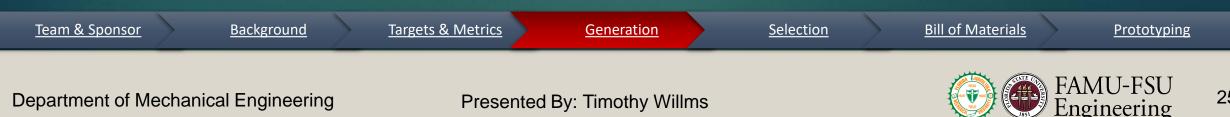
Concept Generation

Department of Mechanical Engineering

Presented By: Timothy Willms

Methods of Concept Generation

- > Morphological Chart
- > Biomimicry
 - Stegosaurus/Elephant Cooling Fins
 - Tortoise Protective Exoskeleton
 - Mammals Evaporative Cooling through Sweating
 - > Reptiles Burying/Shade
 - Seals Blubber Insulation
- Scamper List
- Total Concepts Generated > 900,000


Department of Mechanical Engineering

Presented By: Timothy Willms

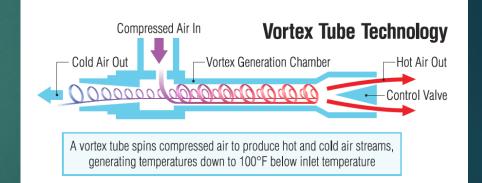
Liquid cooling system

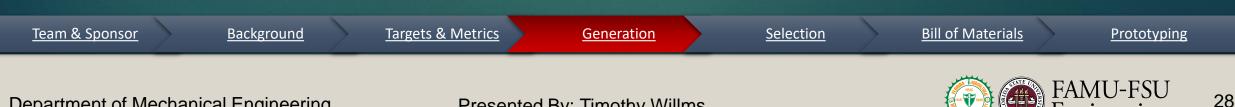
- Vials will be placed in sleeves with small tubes running throughout
- Pumps circulate water/coolant through tubes
- Water/coolant circulated through external fins for evaporative cooling
- Internal volume of device will be evacuated with reasonable range to reduce convection
- > Single, large internal rechargeable battery to power:
 - > Pumps
 - Thermocouples
 - Microcontroller
- Integrated solar panels and hand cranks to charge battery

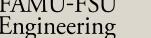
Immersion cooling system

- Coolant will be cooled to below normal system temperatures with incorporated cooling system
- Battery pack using conventional batteries to power:
 - Coolant cooling system (pump, condenser, compressor)
 - Temperature sensors
 - Microcontroller
- Conventional batteries will be cycled through
 - Charged while not in use using an external power generation source

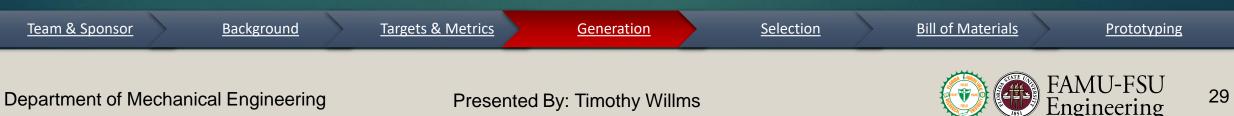
- Miniaturized refrigeration system
 - Evaporator, compressor, condenser, expansion valve
- Large, integrated solar panel array to power:
 - LCD display
 - Thermocouple
 - Microcontroller
 - Miniaturized refrigeration system

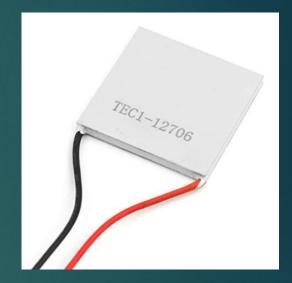



- Standard double-walled insulated cooler
 - Vials placed in individual padded protective sleeves
 - Vials kept in rigid mesh drawer which seals off internal volume from exterior when opened



- Ranque-Hilsch vortex tube cooling system
 - Device that separates compressed gas into hot and cold streams
 - Cold end inside the device, hot end outside the device
- Single, large, internal rechargeable lithium battery to power:
 - LCD display
 - Thermocouple
 - Microcontroller
 - Control valve
 - Compressor
- Cord to plug into various power generation sources
 - No integrated power generation
- Standard double-walled insulated cooler
 - Airtight locking cylinder for each vial





Thermoelectric Cooling System (TEC)

- Peltier effect: opposite of Seebeck effect
- Induced current causes heat on one side and cooling on the other
- Single, large, external emergency battery to power:
 - ➢ LCD display
 - > Thermocouple
 - Microcontroller
 - TEC system (TEC plate & fans)
- Large solar panel which is integrated into the external emergency battery
- Standard double-walled insulated cooler
 - Airtight locking cylinder for each vial
 - Each vial is held in place with zip-tie like clamps

High Fidelity Concept #1

- Miniaturized refrigeration system
 - Evaporator, compressor, condenser, expansion valve
- > Single, large, internal rechargeable lithium battery to power:
 - LCD display
 - > Thermocouple
 - > Microcontroller
 - Miniaturized refrigeration system
- Cord to plug into additionally external emergency battery & other power generation sources
 - No integrated power generation
- Standard double-walled insulated cooler
 - Airtight locking cylinder for each vial

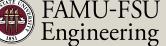
Team & Sponsor	Background	Targets & Metrics	<u>Generation</u>		Selection	Bill of Materials	Prototyping	
Department of Me	chanical Engineering	Present	ed By: Timothy Wille	ne			FAMU-FSU	30

Engineering

High Fidelity Concept #2

- Compressed gas cooling system
 - Release of compressed gas into the device will cool medication
 - Compressed gas will be stored in external tank(s)
- Single, large, internal rechargeable battery to power:
 - LCD display
 - Thermocouple
 - > Microcontroller
 - Control valve for compressed liquid
- Cord to plug into various power generation sources
 - No integrated power generation
- Standard double-walled insulated cooler
 - Airtight locking cylinder for each vial
 - Each vial is wrapped in "cool towel" material

Team & Sponsor	Background	>	Targets & Metrics		<u>Generation</u>		Selection	Bill of Materials	Prototyping	
Department of Me	chanical Engineering	g	Presei	nted	l By: Timothy Willr	ns			FAMU-FSU Engineering	31



High Fidelity Concept #3

Endothermic chemical reaction cooling system

- Ammonium chloride (NH4CL) mixed with water (H2O) reacts endothermically
- \succ Fan to circulate air
- \succ Single, large, internal rechargeable lithium battery to power:
 - \succ LCD display
 - > Thermocouple
 - > Microcontroller
 - Servo which will dispense NH4CL
- Cord to plug into various power generation sources
 - No integrated power generation
- Double-walled, vacuum-sealed cooler
 - Vacuum-sealed individual cylinders for each vial

Team & Sponsor	Background	Targets & Metrics	<u>Generation</u>	Selection	Bill of Materials	Prototyping	
Department of Mec	hanical Engineering	Presen	ted By: Timothy Willn	ns		FAMU-FSU	32

Concept Selection

Department of Mechanical Engineering

Presented By: Timothy Willms

Concept Selection

- 5 concepts chosen to be analyzed:
 - Concept 1: High Fidelity Concept #1 Miniaturized Refrigeration System
 - > Concept 2: High Fidelity Concept #2 Compressed Gas Cooling System
 - Concept 3: High Fidelity Concept #3 Endothermic Chemical Reaction Cooling
 - Concept 4: Medium Fidelity Concept #5 Thermoelectric Cooling System (TEC)
 - Concept 5: Medium Fidelity Concept #4 Ranque-Hilsch Vortex Tube Cooling

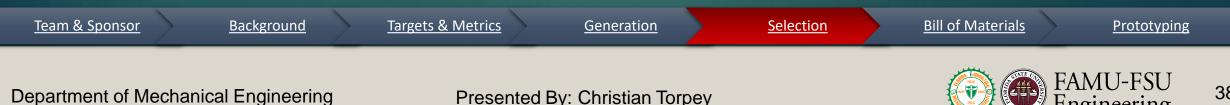
Binary Comparison Matrix

- Used to compare our customer needs and determine which are of higher priority. Ranked each need against each other need
 - ➢ 0 − less important
 - > 1 more important
- Totals added up along each row and down each column
- > The need with the highest total is the most impactful to our design

	Binary Pairwise Comparison Chart of Customer Requirements												
	The device is intended to store and maintain chilled medication.	The device sustains a desired temperature without the use of ice.	The device is durable in all environmental conditions.	The device is easily portable.	The device can be transported by individuals of every age.	The device visually displays the storage temperature to the user.	The device prohibits unauthorized access.	The device generates and uses minimal power to keep the medication refrigerated.	The device maintains a temperature range suitable for refrigerated medicines.	The device features multiple sources of power generation based on environmental conditions.	The device will maintain power without being connected to the grid.	The device controls the temperature of the system for a target of three months without being plugged into an external power source.	Total
The device is intended to store and maintain chilled medication.	1	0	0	0	0	0	0	0	1	0	0	0	1
The device sustains a desired temperature without the use of ice.	1	1	0	0	0	0	0	1	1	0	1	0	4
The device is durable in all environmental conditions.	1	1	1	1	0	0	0	1	1	0	1	0	6
The device is easily portable.	1	1	0	1	0	0	0	1	1	0	1	0	5
The device can be transported by individuals of every age.	1	1	1	1	1	0	0	1	1	1	1	0	8
The device visually displays the storage temperature to the user.	1	1	1	1	1	1	0	1	1	0	1	0	8
The device prohibits unauthorized access.	1	1	1	1	1	1	1	1	1	1	1	1	11
The device generates and uses minimal power to keep the medication refrigerated.	1	0	0	0	0	0	0	T	1	0	1	0	3
The device maintains a temperature range suitable for refrigerated medicines.	0	0	0	0	0	0	0	0	I	0	0	0	0
The device features multiple sources of power generation based on environmental conditions.	1	1	1	1	0	1	0	1	1	I	1	0	8
The device will maintain power without being connected to the grid.	1	0	0	0	0	0	0	0	1	0	1	0	2
The device controls the temperature of the system for a target of three months without being plugged into an external power source.	1	1	1	1	1	1	0	1	1	1	1	I	10
Total	10	7	5	6	3	3	0	8	11	3	9	1	
Check (TRUE if properly filled out)	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	
<u>Team & Spo</u>	onsor	<u>Backg</u>	round	<u>Targets & N</u>	Metrics	<u>Generatio</u>	<u>n</u>	<u>Selection</u>	B	ill of Materials		ototyping	

Department of Mechanical Engineering

Presented By: Christian Torpey


					Binary Pair	rwise Comparison Chart of Cu	ustomer Requirements						
	The device is intended to store and maintain chilled medication.	The device sustains a desired temperature without the use of ice.	The device is durable in all environmental conditions.	The device is easily portable.	The device can be transported by individuals of every age.	The device visually displays the storage temperature to the user.	The device prohibits unauthorized access.	The device generates and uses minimal power to keep the medication refrigerated.	The device maintains a temperature range suitable for refrigerated medicines.	The device features multiple sources of power generation based on environmental conditions.	The device will maintain power without being connected to the grid.	The device controls the temperature of the system for a target of three months without being plugged into an external power source.	Total
The device is intended to store and maintain chilled medication.	I	0	0	0	0	0	0	0	1	0	0	0	1
The device sustains a desired temperature without the use of ice.	1	1	0	0	0	0	0	1	1	0	1	0	4
The device is durable in all environmental conditions.	1	1	I	1	0	0	0	1	1	0	1	0	6
The device is easily portable.	1	1	0	I	0	0	0	1	1	0	1	0	5
The device can be transported by individuals of every age.	1	1	1	1	1	0	0	1	1	1	1	0	8
The device visually displays the storage temperature to the user.	1	1	1	1	1	I	0	1	1	0	1	0	8
The device prohibits unauthorized access.	1	1	1	1	1	1	1	1	1	1	1	1	11
The device generates and uses minimal power to keep the medication refrigerated.	1	0	0	0	0	0	0	I	1	0	1	0	3
The device maintains a temperature range suitable for refrigerated medicines.	0	0	0	0	0	0	0	0	I	0	0	0	0
The device features multiple sources of power generation based on environmental conditions.	1	1	1	1	0	1	0	1	1	I	1	0	8
The device will maintain power without being connected to the grid.	1	0	0	0	0	0	0	0	1	0	I	0	2
The device controls the temperature of the system for a target of three months without being plugged into an external power source.	1	1	1	1	1	1	0	1	1	1	1	1	10
Total	10	7	5	6	3	3	0	8	11	3	9	1	
Check (TRUE if properly filled out)	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	
<u>Team & Spc</u>	onsor	<u>Backg</u>	round	<u>Targets & N</u>	<u>Metrics</u>	<u>Generatic</u>	<u>n</u>	<u>Selection</u>	В	ill of Materials	<u>P</u>	rototyping	

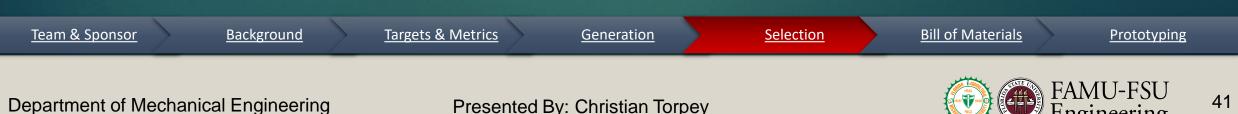
Presented By: Christian Torpey

House of Quality

- Used to determine how well engineering characteristics satisfy customer needs
 - > Our team generated 14 engineering characteristics for analysis
- Each customer need was given a relative weight of importance
 - > Weights used from the results of our Binary Comparison Matrix
- Engineering characteristics given scores based on relation to each customer need
 - \succ 1 weak relation
 - > 3 moderate relation
 - > 9 strong relation
- Engineering characteristics given final ranking of importance

				Engineering Characteristics											
Impr	ovement Direction	\uparrow	\uparrow	\downarrow	\checkmark	↑	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\uparrow	\uparrow	\uparrow	\uparrow
	Units	W	w	W	m3	#	kg	W	sec	m3	\$	#	Ν		
Customer Requirements	Importance Weight Factor	Power Capacity (Storage)	Generated Power	Power Consumption	External Size	Number of Power Generation Sources	Weight	Heat Transfer Rate	Cooling Time	Excess Internal Volume	Cost	Number of Vials Stored	Durability (Impact Resistance)	Ease of Operation	Safety of Medication
The device is intended to store and maintain chilled medication.	10			1		3		9	9	3	9	1			
The device sustains a desired temperature without the use of ice.	7		9	1		3		9	1	1		1			
The device is durable in all environmental conditions.	5				1		1				3		9	3	3
The device is easily portable.	6				9		9				1	9	1	9	
The device can be transported by individuals of every age.	3				9		9						1	9	
The device visually displays the storage temperature to the user.	3	1	1	3							1				
The device prohibits unauthorized access.	0														3
The device generates and uses minimal power to keep the medication refrigerated.	8	3	9	9		3		3	9	1	1				
The device maintains a temperature range suitable for refrigerated medicines.	11	3	9	9			1	9	9		1	3			3
The device features multiple sources of power generation based on environmental conditions.	3	3	9	3		9					9				
The device will maintain power without being connected to the grid.	9	9	9	9		9					3				0
The device controls the temperature of the system for a target of three months without being plugged into an external power source.	1	9	9	9		3		9	9	1	1				0
Raw Score	2276	159	354	296	86	186	97	285	277	46	188	104	54	96	48
Relative Weight %		6.985940246	15.55360281	13.00527241	3.778558875	8.172231986	4.261862917	12.52196837	12.17047452	2.021089631	8.260105448	4.569420035	2.37258348	4.21792619	2.108963093
Rank Order		7	1	2	11	6	9	3	4	14	5	8	12	10	13
Team & Sponsor	B	ackground		Targets & I	<u>Metrics</u>	<u>Ge</u>	eneration		<u>Selectic</u>	on	<u>Bill of</u>	Materials	\rangle	<u>Prototypir</u>	<u>ng</u>

								Engineering (Characteristics						
Impro	ovement Direction	↑	↑	\downarrow	\downarrow	↑	\downarrow	¥	¥	\downarrow	\checkmark	\uparrow	\uparrow	\uparrow	\uparrow
	Units	Wh	w	w	m3	#	kg	w	sec	m3	\$	#	Ν		
Customer Requirements	Importance Weight Factor	Power Capacity (Storage)	Generated Power	Power Consumption	External Size	Number of Power Generation Sources	Weight	Heat Transfer Rate	Cooling Time	Excess Internal Volume	Cost	Number of Vials Stored	Durability (Impact Resistance)	Ease of Operation	Safety of Medication
The device is intended to store and maintain chilled medication.	10			1		3		9	9	3	9	1			
The device sustains a desired temperature without the use of ice.	7		9	1		3		9	1	1		1			
The device is durable in all environmental conditions.	5				1		1				3		9	3	3
The device is easily portable.	6				9		9				1	9	1	9	
The device can be transported by individuals of every age.	3				9		9						1	9	
The device visually displays the storage temperature to the user.	3	1	1	3							1				
The device prohibits unauthorized access.	0														3
The device generates and uses minimal power to keep the medication refrigerated.	8	3	9	9		3		3	9	1	1				
The device maintains a temperature range suitable for refrigerated medicines.	11	3	9	9			1	9	9		1	3			3
The device features multiple sources of power generation based on environmental conditions.	3	3	9	3		9					9				
The device will maintain power without being connected to the grid.	9	9	9	9		9					3				0
The device controls the temperature of the system for a target of three months without being plugged into an external power source.	1	9	9	9		3		9	9	1	1				0
Raw Score	2276	159	354	296	86	186	97	285	277	46	188	104	54	96	48
Relative Weight %		6.985940246	15.55360281	13.00527241	3.778558875	8.172231986	4.261862917	12.52196837	12.17047452	2.021089631	8.260105448	4.569420035	2.37258348	4.21792619	2.108963093
Rank Order		7	1	2	11	6	9	3	4	14	5	8	12	10	13
<u>Team & Sponsor</u>	B	ackground		Targets & I	<u>Metrics</u>	<u>Ge</u>	eneration		<u>Selectic</u>	<u>on</u>	<u>Bill of</u>	Materials	\rangle	<u>Prototypir</u>	<u>וק</u>


Presented By: Christian Torpey

Pugh Chart

> Used to compare how well a concept performs in relation to an engineering characteristic

- Used top five engineering characteristics from HOQ
- > Datum design (store-bought cooler) used as baseline for comparison of concepts
 - > Concept given (+1) if better than datum, (-1) if worse, and (0) if equal
 - Columns totaled to given ranking of concepts, with highest being the best
- > Second Pugh chart made to compare top three concepts from initial Pugh chart
 - Concept with a total of zero from initial Pugh chart was used as new Datum
 - > Highest total from this chart determines the best concept for selection

	Datum			Concepts		
Selection Criteria	Dcol Battery Powered Insulin Cooler	1	2	3	4	5
Generated Power	0	1	1	1	1	1
Power Consumption	0	-1	1	1	S	S
Heat Transfer Rate	0	1	1	1	1	1
Cooling Time	0	S	1	-1	S	S
Cost	0	-1	-1	-1	-1	-1
# of pluses	0	2	4	3	2	2
# of minuses	0	2	1	2	1	1

Colortion Cuitoria	Datum		Concepts	
Selection Criteria	1	2	3	4
Generated Power	0	S	S	S
Power Consumption	0	2	2	1
Heat Transfer Rate	0	S	S	S
Cooling Time	0	1	-1	S
Cost	0	S	S	S
# of pluses	0	3	2	1
# of minuses	0	0	1	0

<u>Team & Sponsor</u>	<u>Background</u>	Targets & Metrics	Generation	<u>Selection</u>	Bill of Materials	Prototyping

Presented By: Christian Torpey

	Datum			Concepts		
Selection Criteria	Dcol Battery Powered Insulin Cooler	1	2	3	4	5
Generated Power	0	1	1	1	1	1
Power Consumption	0	-1	1	1	S	S
Heat Transfer Rate	0	1	1	1	1	1
Cooling Time	0	S	1	-1	S	S
Cost	0	-1	-1	-1	-1	-1
# of pluses	0	2	4	3	2	2
# of minuses	0	2	1	2	1	1

			그는 것은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 것 같이 것	
Coloction Cuitoria	Datum		Concepts	
Selection Criteria	1	2	3	4
Generated Power	0	S	S	S
Power Consumption	0	2	2	1
Heat Transfer Rate	0	S	S	S
Cooling Time	0	1	-1	S
Cost	0	S	S	S
# of pluses	0	3	2	1
# of minuses	0	0	1	0

<u>Team & Sponsor</u>	Background	Targets & Metrics	Generation	<u>Selection</u>	Bill of Materials	Prototyping

	Datum			Concepts		
Selection Criteria	Dcol Battery Powered Insulin Cooler	1	2	3	4	5
Generated Power	0	1	1	1	1	1
Power Consumption	0	-1	1	1	S	S
Heat Transfer Rate	0	1	1	1	1	1
Cooling Time	0	S	1	-1	S	S
Cost	0	-1	-1	-1	-1	-1
# of pluses	0	2	4	3	2	2
# of minuses	0	2	1	2	1	1

	Datum	· · · · · · · · · · · · · · · · · · ·	Concepts	
Selection Criteria	1	2	3	4
Generated Power	0	S	S	S
Power Consumption	0	2	2	1
Heat Transfer Rate	0	S	S	S
Cooling Time	0	1	-1	S
Cost	0	S	S	S
# of pluses	0	3	2	1
# of minuses	0	0	1	0

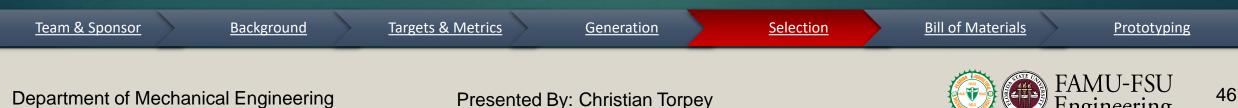
Team & SponsorBackgroundTargets & MetricsGenerationSelectionBill of MaterialsPrototyping

Department of Mechanical Engineering

Presented By: Christian Torpey

	Datum			Concepts		
Selection Criteria	Dcol Battery Powered Insulin Cooler	1	2	3	4	5
Generated Power	0	1	1	1	1	1
Power Consumption	0	-1	1	1	S	S
Heat Transfer Rate	0	1	1	1	1	1
Cooling Time	0	S	1	-1	S	S
Cost	0	-1	-1	-1	-1	-1
# of pluses	0	2	4	3	2	2
# of minuses	0	2	1	2	1	1

Selection Criteria	Datum		Concepts	
Selection Criteria	1	2	3	4
Generated Power	0	S	S	S
Power Consumption	0	2	2	1
Heat Transfer Rate	0	S	S	S
Cooling Time	0	1	-1	S
Cost	0	S	S	S
# of pluses	0	3	2	1
# of minuses	0	0	1	0


<u>Team & Sponsor</u>	<u>Background</u>	Targets & Metrics	<u>Generation</u>	<u>Selection</u>	Bill of Materials	<u>Prototyping</u>

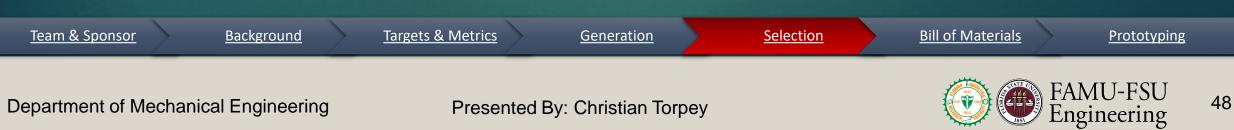
Presented By: Christian Torpey

AHP

- > More in-depth analysis of concepts in relation to the top five engineering characteristics
 - Consistency checks for accuracy
- First compares engineering characteristics to determine relative weights
- > Then concepts are compared to one another, in relation to each characteristic
 - Concepts given relative weights for each characteristic
- Finally, a table of concepts vs. characteristics is generated
- From this table, a list of alternate values is calculated
 - Highest value is the best design

		Criteria Compa	rison Matrix [C]		
	Generate Power	Power Consumption	Heat Transfer	Cooling Time	Cost
Generate Power	1	3	5	5	0.33333333
Power Consumption	0.33333333	1	3.00000003	5	0.333333333
Heat Transfer	0.2	0.33333333	1	3	0.2
Cooling Time	0.2	0.2	0.33333333	1	0.2
Cost	3	3	5	5	1
Sum	4.733333333	7.53333333	14.33333334	19	2.066666666

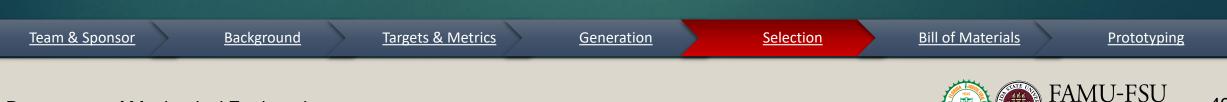
Generate Power 0.211267606 0.070422535 0.042253521 0.042253521	Power Consumption 0.398230089 0.132743363 0.044247788 0.026548673	Heat Transfer 0.348837209 0.209302326 0.069767442 0.023255814	Cooling Time 0.263157895 0.263157895 0.157894737 0.052631579	Cost 0.161290322 0.161290322 0.096774194 0.096774194	Criteria weights {W} 0.276556624 0.167383288 0.082187536 0.048292756
0.070422535 0.042253521 0.042253521	0.132743363 0.044247788	0.209302326 0.069767442	0.263157895 0.157894737	0.161290322 0.096774194	0.167383288 0.082187536
0.042253521 0.042253521	0.044247788	0.069767442	0.157894737	0.096774194	0.082187536
0.042253521					
	0.026548673	0.023255814	0.052631579	0.096774194	0.048292756
					01010202700
0.633802817	0.398230089	0.348837209	0.263157895	0.483870968	0.425579795
1	1	1	1	1	1
kground <u>Ta</u>	argets & Metrics	<u>Generation</u>	Selection	Bill of Mate	erials Prot


Presented By: Christian Torpey

	Consistency Check	
{Ws}=[C]{W}	{W}	Cons={Ws}./{W}
Weighted Sum Vector	Criteria Weights	Consistency Vector
1.572967881	0.276556624	5.687688322
0.88945515	0.167383288	5.313882645
0.423287518	0.082187536	5.150264105
0.249592543	0.048292756	5.168322611
2.409800994	0.425579795	5.662395206

RI Values for Co	nsistency Check
# of criteria	RI value
3	0.52
4	0.89
5	1.11
6	1.25
7	1.35
8	1.4
9	1.45
10	1.49
11	1.51

Average consistency	5.396510578
Consistency Index	0.099127644
Consistency Ratio	0.089304184



Presented By: Christian Torpey

	Consistency Check	
{Ws}=[C]{W}	{W}	Cons={Ws}./{W}
Weighted Sum Vector	Criteria Weights	Consistency Vector
1.572967881	0.276556624	5.687688322
0.88945515	0.167383288	5.313882645
0.423287518	0.082187536	5.150264105
0.249592543	0.048292756	5.168322611
2.409800994	0.425579795	5.662395206

RI Values for Co	nsistency Check
# of criteria	RI value
3	0.52
4	0.89
5	1.11
6	1.25
7	1.35
8	1.4
9	1.45
10	1.49
11	1.51

Average consistency	5.396510578
Consistency Index	0.099127644
Consistency Ratio	0.089304184

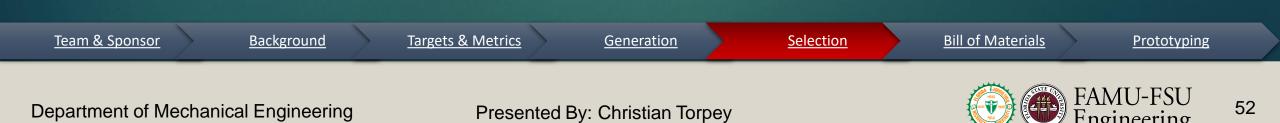
Presented By: Christian Torpey

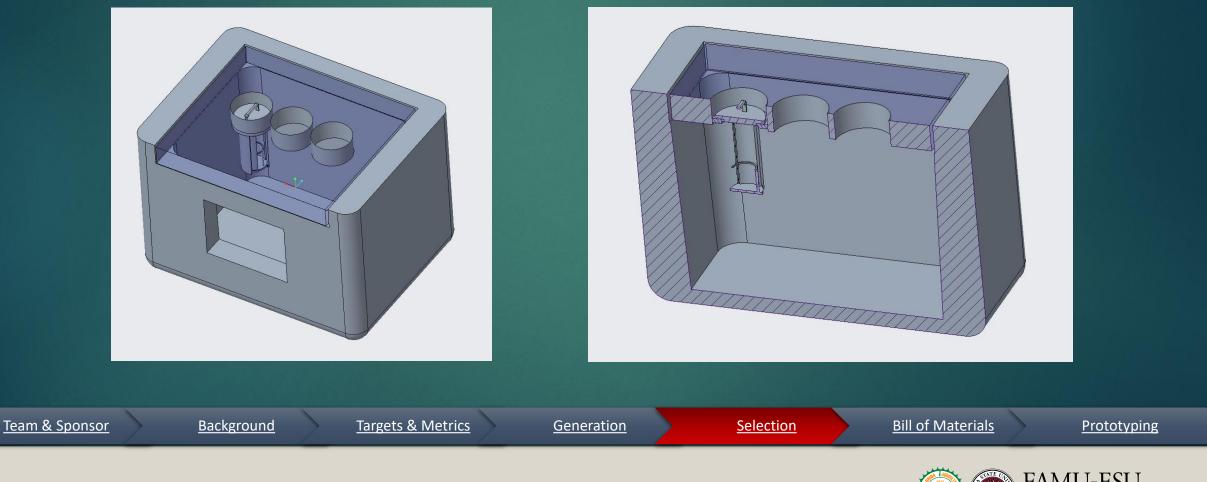
FAMU-FSU Engineering

	Design 1	Design 2	Design 3	Design 4	Design 5
Generate Power	0.087895628	0.255766093	0.230469886	0.337972765	0.087895628
Power Consumption	0.057818035	0.457562648	0.283175483	0.121938596	0.079505239
Heat Transfer	0.09025974	0.261255411	0.467965368	0.09025974	0.09025974
Cooling Time	0.065409262	0.504406831	0.134526811	0.260760699	0.034896396
Cost	0.063215889	0.351477677	0.17415269	0.351477677	0.059676066
		[Final Rati	ing Matrix]^T		
	Design 1	Design 2	Design 3	Design 4	Design 5
Generate Power	0.087895628	0.057818035	0.09025974	0.065409262	0.063215889
Power Consumption	0.255766093	0.457562648	0.261255411	0.504406831	0.351477677
Heat Transfer	0.230469886	0.283175483	0.467965368	0.134526811	0.17415269
Cooling Time	0.337972765	0.121938596	0.09025974	0.260760699	0.351477677
Cost	0.087895628	0.079505239	0.09025974	0.034896396	0.059676066
		Concept	Alternative Value		
		Design 1	0.071466316		
		Design 2	0.34273508		
		Design 3	0.230210274		
		Design 4	0.283471966		
		Design 5	0.072116363		

Presented By: Christian Torpey

	Design 1	Design 2	ting Matrix Design 3	Design 4	Design 5
Generate Power	0.087895628	0.255766093	0.230469886	0.337972765	0.087895628
Power Consumption	0.057818035	0.457562648	0.283175483	0.121938596	0.079505239
Heat Transfer	0.09025974	0.261255411	0.467965368	0.09025974	0.09025974
Cooling Time	0.065409262	0.504406831	0.134526811	0.260760699	0.034896396
Cost	0.063215889	0.351477677	0.17415269	0.351477677	0.059676066
		[Final Rati	ing Matrix]^T		
	Design 1	Design 2	Design 3	Design 4	Design 5
Generate Power	0.087895628	0.057818035	0.09025974	0.065409262	0.063215889
Power Consumption	0.255766093	0.457562648	0.261255411	0.504406831	0.351477677
Heat Transfer	0.230469886	0.283175483	0.467965368	0.134526811	0.17415269
Cooling Time	0.337972765	0.121938596	0.09025974	0.260760699	0.351477677
Cost	0.087895628	0.079505239	0.09025974	0.034896396	0.059676066
		Concept	Alternative Value		
		Design 1	0.071466316		
		Design 2	0.34273508		
		Design 3	0.230210274		
		Design 4	0.283471966		
		Design 5	0.072116363		
or <u>Backg</u>	round Torgo	ets & Metrics	Generation	Selection	Bill of Materials

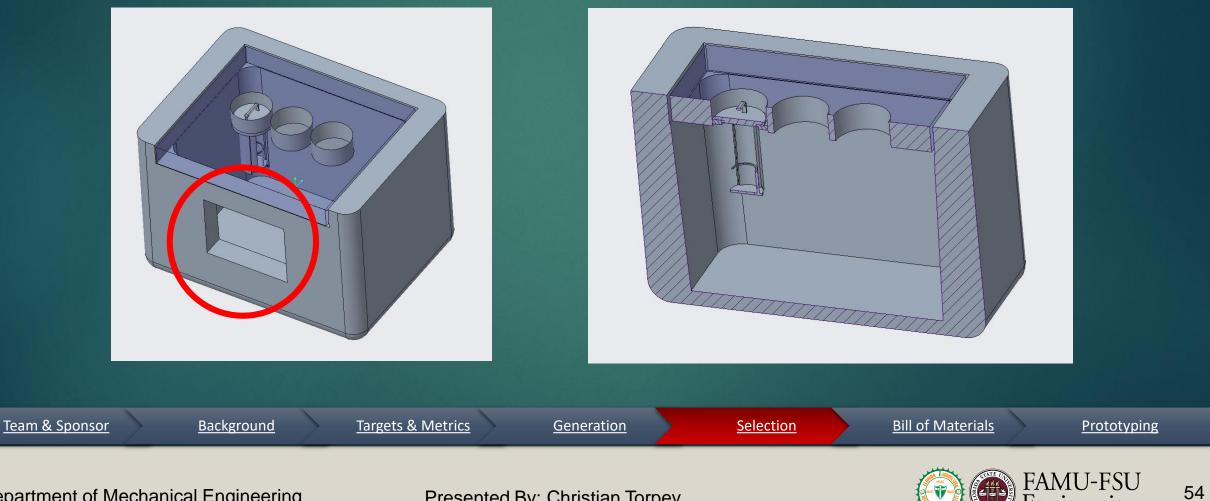

Presented By: Christian Torpey


Final Selection

> Pugh chart & AHP determined Concept 2 would be the optimal selection

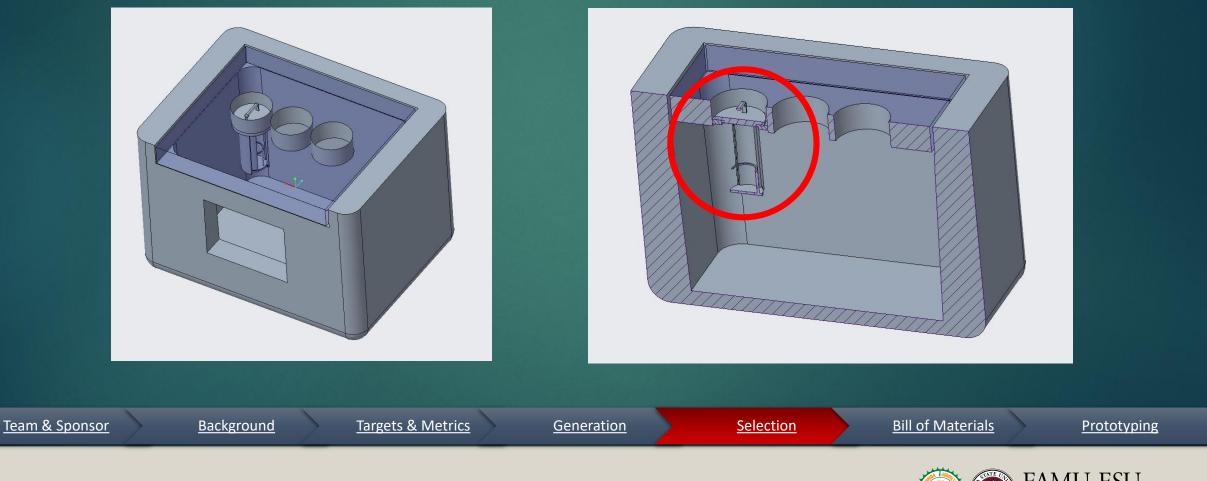
- > In practicality, this concept is infeasible due to:
 - > Difficulty obtaining large quantities of compressed gas
 - > High safety risk in handling compressed gases
- > Therefore, Concept 4 (TEC System) was selected as the final design
 - Second lowest cost & consumption of power
 - > TEC can be powered with AA batteries if necessary

Final Design

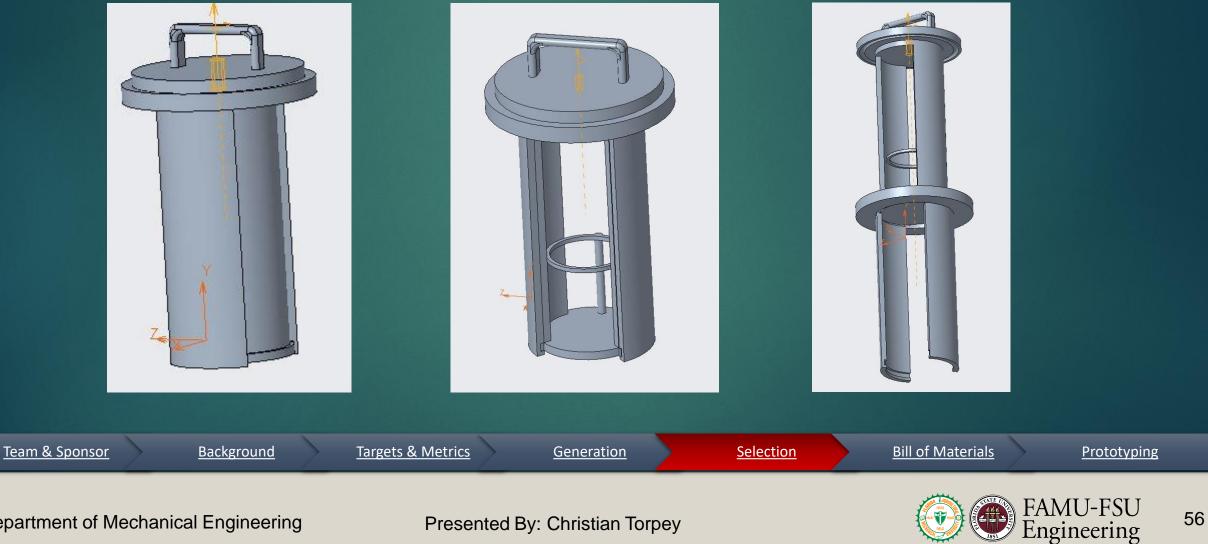


Department of Mechanical Engineering

Presented By: Christian Torpey


Final Design

Presented By: Christian Torpey


Final Design

Presented By: Christian Torpey

Locking Cylinders

Department of Mechanical Engineering

Presented By: Christian Torpey

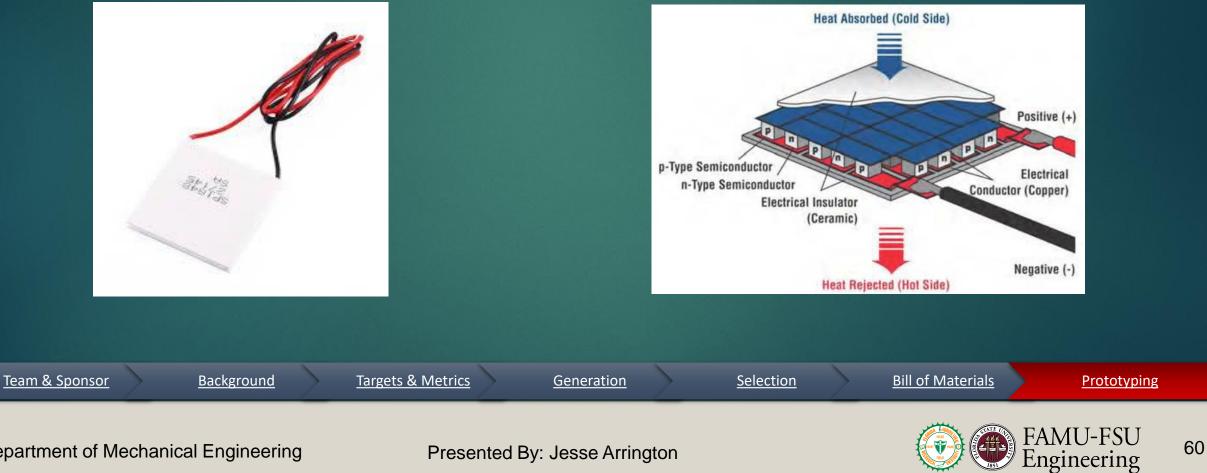
Bill of Materials

- Early stages of purchasing
- > Optimizing purchasing for benefit of prototyping and final product

T512 Part Number	Item	Description	Quanti ty	Manufacturer	Supplier Contact	Unit Weight	Specifications	Unit Cost	Cost Shipping	Total Cost	Shipping times	Purchase Order #	Ordered (Yes)	Arrived (Yes)	Unit Maturity (%)	Project Weight (out of 100%)	Unit Total
1	Void-Filling Spray Foam Insulation	1.8lbs./cu. ft Density. Heat Flow Rate: 0.16 Btu @ 75F	1	n/a	McMaster-Carr	1.04 kg	1.04 kg can	\$40.00	\$40.00	\$40.00			NO	NO	0%	5%	0.0%
2	Buna-N O-Ring	34mm ID, 2mm Thickness, 38mm OD	1	n/a	McMaster-Carr	n/a	Pack of 50	\$10.23	\$10.23	\$50.23			NO	NO	0%	1%	0.0%
3	Legend 6-Can Cooler	5 qt cooler	1	Igloo	Igloo	1 kg	EXT DIM: 27.5*20.5*18.7 cm. INT DIM: Top: 21.6*16.2*14.9 cm. Bottom: 20.5*15.2*14.9 cm	\$22.49	\$22.49	\$72.72			NO	NO	0%	30%	0.0%
4	Explorer 240 Portable Power Station	240Wh (14.4V, 16.8Ah). Charging Input:12V-30V(42W Max). DC Output: 13.3V, up to 10A. USB Output: 5V 2.4A	1	Jackery	Jackery.com	3 kg	13.2*23.1*19.6 cm	\$249.99	\$249.99	\$322.71			NO	NO	0%	12%	0.0%
5	Explorer 50W Solar Panel	Equipped with 1* USB-A output port (SV/2.4A) and 1*USB-C output port (SV/3A) in addition to 1* DC port (16.2V/3.15A/50W)	1	Jackery	Jackery.com	2.46 kg	56.5*39.5*1 cm	\$199.99	\$199.99	\$522.70			NO	NO	0%	4%	0.0%
6	Super Silicone Sealant	3oz Tube. Temperature Range: - 75F to 400F. 325 psi Tensile Strength. 24hr Hardening Time	1	ЗМ	McMaster-Carr	n/a	88.72 mL Tube	\$11.60	\$11.60	\$534.30			NO	NO	0%	3%	0.0%
7	Mini Nano V3.0 ATmega328P Microcontrolle r Board	Arduino Nano. Digital I/O Pins 14 (of which 6 provide PWM output). Flash Memory 32 KB (ATmega328) of which 2 KB used by bootloader	1	Makerfire	Amazon.com	0.0227 kg	3.3*1.8 cm	\$8.29	\$8.29	\$542.59			NO	NO	0%	5%	0.0%
8	USB Battery Pack	2200mAh Capacity. 5V 1A Output	1	Adafruit	Adafruit	0.073 kg	2.5*91*2.5 cm	\$14.95	\$14.95	\$557.54			NO	NO	0%	5%	0.0%
9	USB Male to Male Cable	USB 2.0 Cable, 45.7cm Long	1	Monoprice	Amazon.com	0.0045 kg	45.7 cm	\$4.94	\$4.94	\$562.48			NO	NO	0%	5%	0.0%
10	Large Sized Heat Sink set	12V Thermoelectric Peltier Cooler Refrigeration Cooling System Heat Sink Conduction Module	2	n/a	Amazon.com	354.88 mL	14.9 x 13.9 x 8.9 cm	\$23.49	\$46.98	\$609.46			NO	NO	0%	21%	0.0%
11	Digital Thermocouple	Proster Digital Thermocouple Temperature Thermometer with Two K-Type Thermocouple	1	Proster	Amazon.com	236.59 mL	-200°C to 1372°C	\$22.99	\$22.99	\$632.45			YES	YES	100%	5%	5.0%
12	Locking Cylinders	SLA Printed	3	Ciscor	n/a	n/a	4.5 cm OD, 7.0 cm Length	\$0.00	\$0.00	\$632.45			NO	NO	0%	3%	0.0%
13	Exterior Protective Grate	ABS Printed In Sections	1	Innovation Hub	n/a	n/a	20.0 cm Width, 12.5 cm Height, 2.5 cm Depth	\$0.00	\$0.00	\$632.45			NO	NO	0%	1%	0.0%
	<u>Team & Sp</u>	onsor <u>E</u>	Backgro	ound	Targe	<u>ets & Met</u>	rics	<u>Genera</u>	tion	<u><u>S</u></u>	<u>election</u>		<u>Bill of M</u>	<u>aterials</u>	Pr	ototyping	

Presented By: Jesse Arrington

Current Prototyping


Department of Mechanical Engineering

Presented By: Jesse Arrington

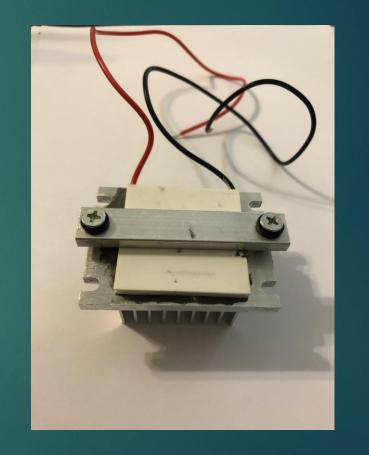
Current Prototyping

Thermoelectric Modules:

Department of Mechanical Engineering

Presented By: Jesse Arrington

Current Prototyping


Testing:

- Modeling of 1-D Heat Transfer for TEC system
- Analyzing current vs heat transfer rate
 - i.e. Single module at higher current compared to multiple modules at a lower current

Targets & Metrics

Optimizing fin efficiency

Background

Bill of Materials

Team & Sponsor

Generation


Selection

Prototyping

References

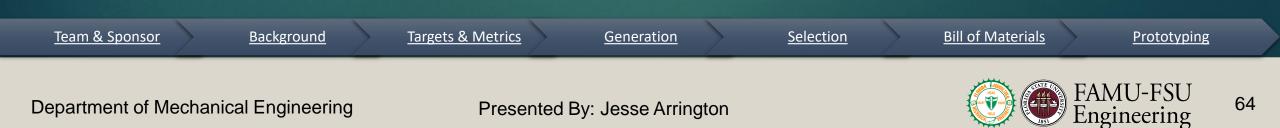
- BowStern Marketing Communications. (n.d.). BowStern : Desire to Communicate. Retrieved October 7, 2019, from http://www.bowstern.com/.
- Derzypolski, T. (2018, June 16). An option for the Children's Services Council that could satisfy many: Opinion. Retrieved October 6, 2019, from https://www.tallahassee.com/story/opinion/2018/06/16/option-childrens-services-council-could-satisfy-many/705225002/
- Federal Emergency Management Agency FEMA Seal Plague (Round), (n.d.), Retrieved October 6, 2019, from https://americanplaguecompany.com/product/federalemergency-management-agency-fema-seal-plague-round/
- Fink, S. (2018, June 3). Puerto Rico: How Do We Know 3,000 People Died as a Result of Hurricane Maria? Retrieved October 6, 2019, from https://www.nytimes.com/2018/06/02/us/puerto-rico-death-tolls.html
- Medication Storage at Home. (n.d.). Retrieved October 6, 2019, from https://medangel.co/medication-storage-at-home/
- Moye, D., & McGonigal, C. (2018, March 9). These Stunning GIFs Show St. Martin's Miraculous Recovery From Hurricanes Irma And Maria. Retrieved October 6, 2019, from https://www.huffpost.com/entry/watch-st-martins-hurricane-recovery-in-these-stunning-before-and-after-images n 5a9ecb1be4b002df2c5e3165.
- Polley, N. (n.d.). Red Cross Helps Missouri Flood Victims. Retrieved October 6, 2019, from https://www.ktts.com/2019/03/31/red-cross-helps-missouri-flood-victims/.
- Pulmozyme (dornase alfa) Uses, Dosage, Side Effects. (n.d.). Retrieved October 6, 2019, from https://www.drugs.com/pulmozyme.html.
- Reports: Hurricane Maria makes landfall in Puerto Rico with 155 mph winds. (n.d.). Retrieved October 6, 2019, from https://www.accuweather.com/en/weathernews/reports-hurricane-maria-nears-virgin-islands-puerto-rico-as-winds-reach-175-mph/70002762.
- Taking BYETTA. (n.d.). Retrieved October 6, 2019, from https://www.byetta.com/taking-byetta.html
- U.S. Department of Defense (DOD). (n.d.). Retrieved October 6, 2019, from http://www.milbadges.com/corps/USA/dod.
- Victoza (Liraglutide [rDNA] Injection): Side Effects, Interactions, Warning, Dosage & Uses. (n.d.). Retrieved October 6, 2019, from https://www.rxlist.com/victozadrug.htm.



Department of Mechanical Engineering

Presented By: Jesse Arrington

References


- https://the-isle-dinosaur-game.fandom.com/wiki/Stegosaurus
- https://animalcorner.co.uk/animals/tortoise/
- https://www.gqmiddleeast.com/grooming/how-to-deal-with-excessive-sweating
- https://www.earth.com/news/seals-regulate-oxygen-diving/
- https://www.amazon.com/YKS-TEC1-12706-Thermoelectric-Cooler-Peltier/dp/B007H2IXV2
- > https://www.alibaba.com/product-detail/Mini-refrigerator-with-lock-mini-fridge_60539764431.html
- https://www.vortec.com/vortex-tube-short-course

Questions?

≻ Contact Us!

Tyler White (Energy Systems Engineer)- <u>tpw16@my.fsu.edu</u>
Christian Torpey (Technical Engineer) - <u>cbt13b@my.fsu.edu</u>
Jesse Arrington (Design Engineer) - <u>jca15@my.fsu.edu</u>
Matthew Israel (Thermal Process Engineer) - <u>mi16e@my.fsu.edu</u>
Timothy Willms (Production Engineer) - <u>tjm15m@my.fsu.edu</u>

