

Team 512

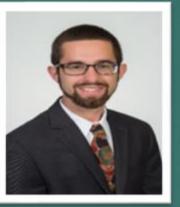
Temperature-Sensitive Medication Storage for Natural Disasters

06-FEB-20

Department of Mechanical Engineering

Presented By: Christian Torpey

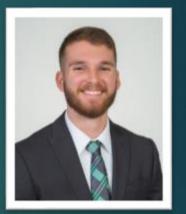
Meet the Team


Jesse Arrington Design Engineer

Team & Sponsor

Christian Torpey Technical Engineer

Targets & Metrics



Matthew Israel Thermal Process Engineer

Tyler White Energy Systems Engineer

Selection

Timothy Willms Production Engineer

Department of Mechanical Engineering

Background

Presented By: Christian Torpey

Generation

Current Progress

2

Future Tasks

Sponsor

Tom Derzypolski President of BowStern Marketing

- Florida State University graduate
- Bachelor's in Communications with an emphasis on Public Relations

Targets & Metrics

- Decorated veteran of the U.S. Navy
- > Member of:
 - Florida Public Relations Association
 - American Advertising Federation
 - Veterans of Foreign Wars

Background

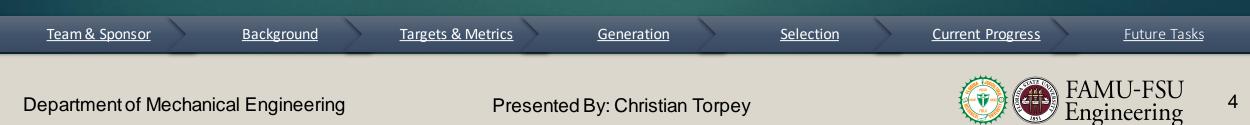
<u>Future Tasks</u>

Department of Mechanical Engineering

Team & Sponsor

Presented By: Christian Torpey

Generation

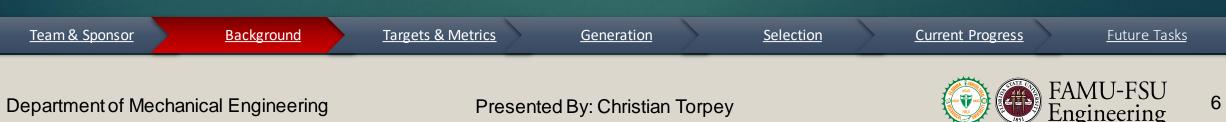

Current Progress

Selection

Overview

Project Brief Summary
Targets and Metrics
Concept Generation
Concept Selection
Current Progress
Planned Tasks/Future Work

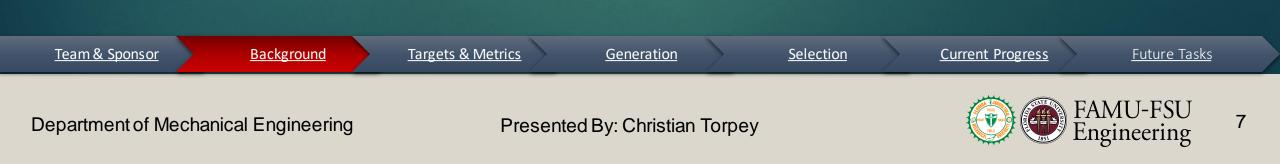
Project Brief Summary


Department of Mechanical Engineering

Presented By: Christian Torpey

Objective

The objective of this project is to provide an affordable and accessible means to keep temperature sensitive medications cool during natural disasters and the days following.



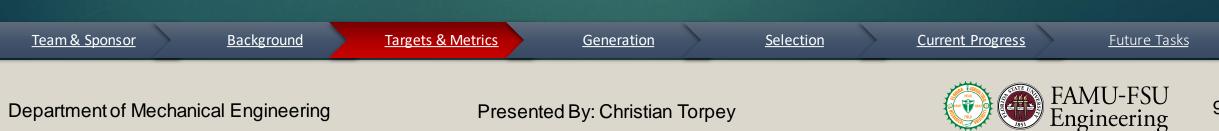
Presented By: Christian Torpey

Background

- Puerto Ricans were out of power for an average of 84 days following Hurricane Maria
- 46% spike in diabetes related deaths
- Most common medications need to be between 2°C and 8°C

Targets & Metrics

Department of Mechanical Engineering


Presented By: Christian Torpey

Targets & Metrics

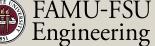
- Internal volume should accommodate 3 vials of medication
 - 20mm diameter, 50mm tall
- No vials should be broken
- Keep vials within range for at least one week
- Reasonable power usage
 - Common voltages (1.5V-12V)
- Temperature regulation
 - Internal temperature between 2°C and 8°C
 - <15min to reach temperature range</p>

20mm 50mm

Presented By: Christian Torpey

Concept Generation

Department of Mechanical Engineering


Presented By: Christian Torpey

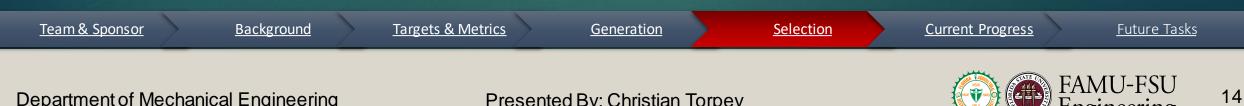
Medium Fidelity Concept

- Active liquid cooling system
 - Pump circulates coolant through tubing around vials.
- Immersion cooling system
 - Submerge vials in coolant
- Miniaturized refrigeration system \succ
 - Solar powered
- Ranque-Hilsch vortex tube cooling system
 - Separates compressed gas into hot and cold streams
- Thermoelectric cooling system
 - Inducing a current in Peltier plate produces cooling effect

High Fidelity Concept

- Miniaturized refrigeration system
 - > Single, large internal battery
- Compressed gas cooling system
 - Release of compressed gas provides cooling
- Endothermic chemical reaction cooling system
 - Use chemical reaction in instant cold pack to provide cooling

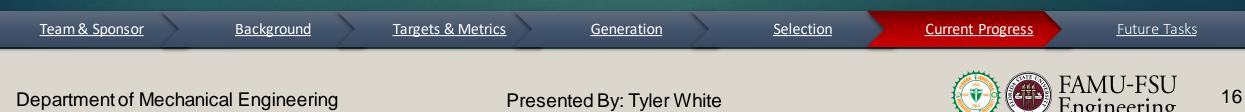
Concept Selection

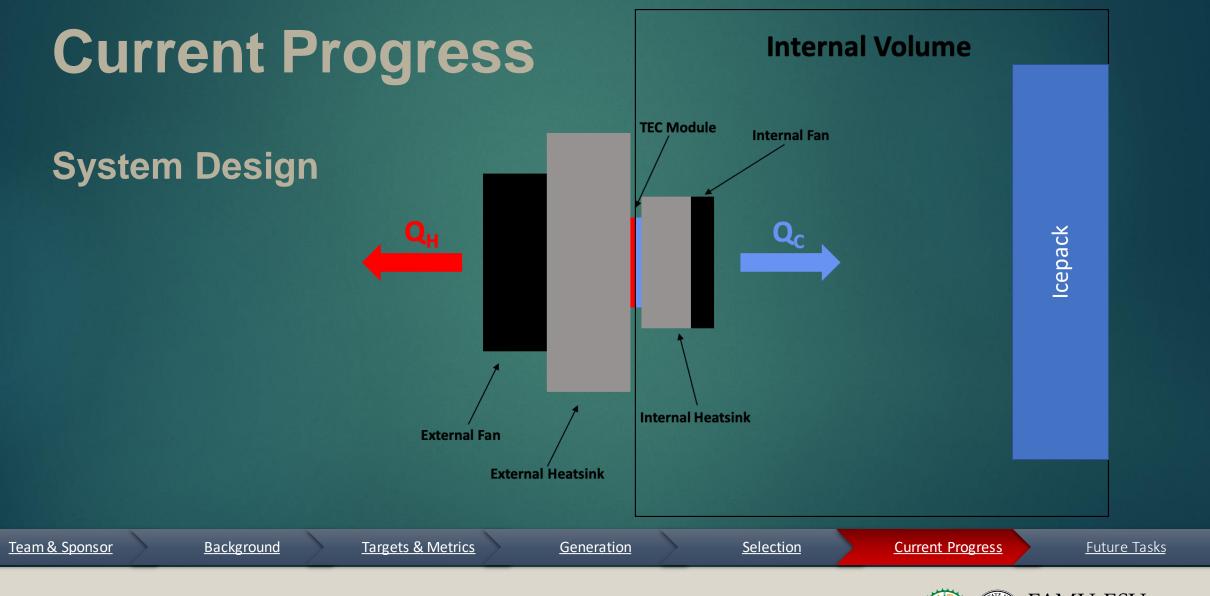

Department of Mechanical Engineering

Presented By: Christian Torpey

Final Selection

- Pugh chart & AHP determined the Compressed Gas Cooling System would be the optimal selection
 - \succ In practicality, this concept is infeasible due to:
 - Difficulty obtaining large quantities of compressed gas
 - High safety risk in handling compressed gases
- Therefore, the TEC System was selected as the final design
 - Second lowest cost & consumption of power
 - Most feasible of remaining concepts


Department of Mechanical Engineering

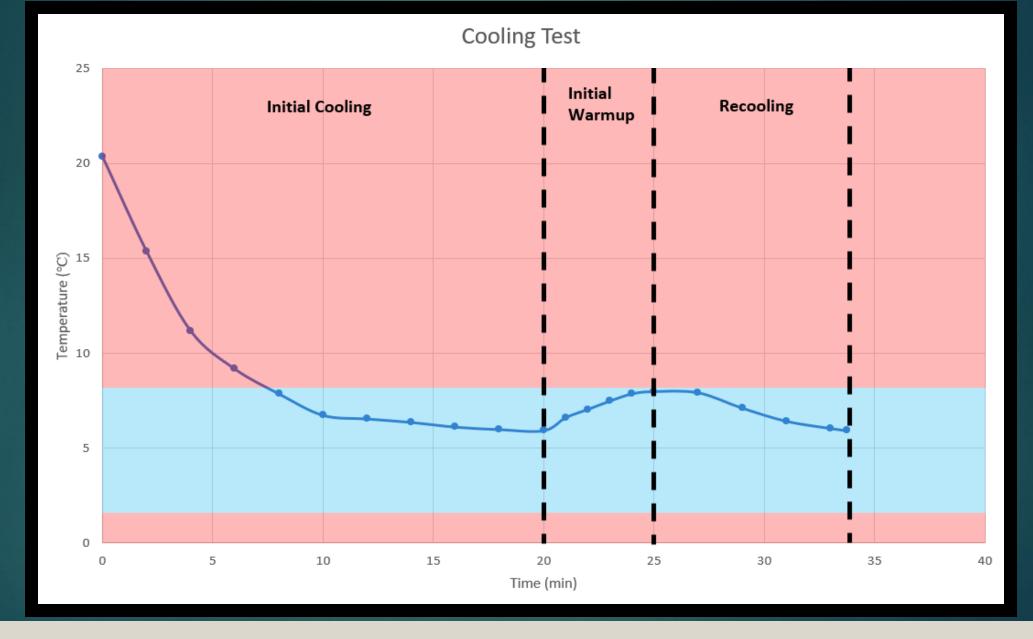

Presented By: Christian Torpey

Thermoelectric (TEC) Module Testing:

- Current Prototype model utilizes a hard-shell cooler
 - Internal thermocouple to measure the temperature
 - Two fan, two heat sink configuration
 - Minimized internal volume using foam insulation to approximately 144 in³
 - Use of icepack to maintain cold within the system
 - Improved insulation around TEC border with cooler

Department of Mechanical Engineering

Presented By: Tyler White



Testing Phases:

- **Initial Cooling** \succ
 - Required time to reach appropriate refrigerated temperature from ambient conditions \geq
 - TEC turned on at beginning of this phase \geq
- **Initial Warming**
 - Once equilibrium temperature is reached, this phase measures the time required to exceed the required temperature range
 - TEC is turned off at beginning of this phase \succ
- \succ Recooling
 - Once the temperature range is exceeded, this phase measures the time required to reach equilibrium temperature \succ again
 - TEC turned on at beginning of this phase

Initial Cooling:

- Reached viable temperature range (2°C<T<8°C) in less than 8 minutes
- Initial Operating Power: 13.85W
 - Operating Voltage: 7.1V
 - Operating Current: 1.95A

Background

Targets & Metrics

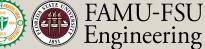
Team & Sponsor

Presented By: Tyler White

Initial Warmup:

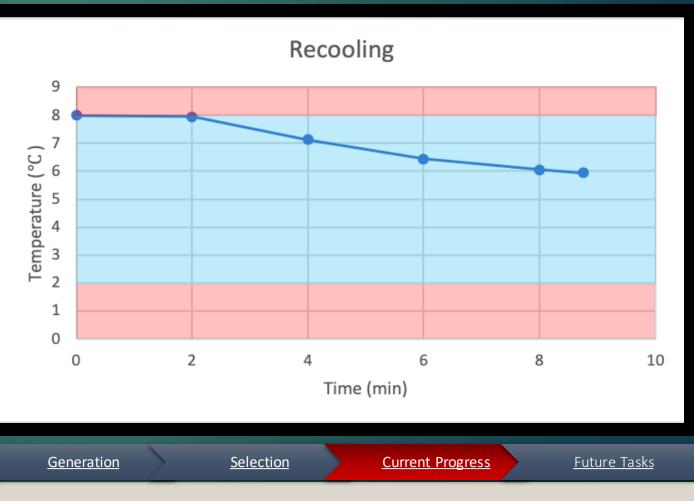
- Complete system shutdown
 - Initial temperature: 5.94°C
- Approximately 5 minutes to reach a temperature outside of the range (>8°C)

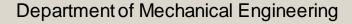
Background


Targets & Metrics

Department of Mechanical Engineering

Team & Sponsor


Presented By: Tyler White



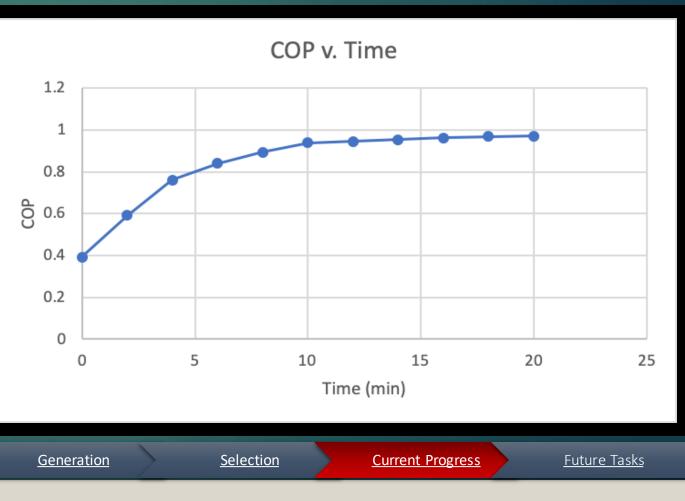
Recooling Phase:

- System was turned on at 8°C
 - Supplied 7.1V, 1.95A
- Reached 5.94°C in less than 9 minutes
- ~2:1 power/no-power ratio

Background

Team & Sponsor

Presented By: Tyler White

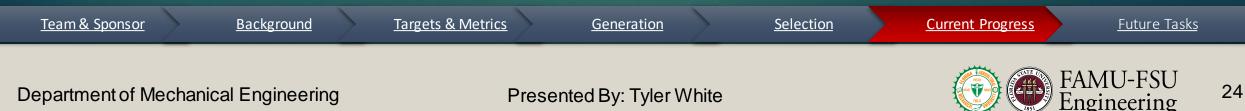

Targets & Metrics

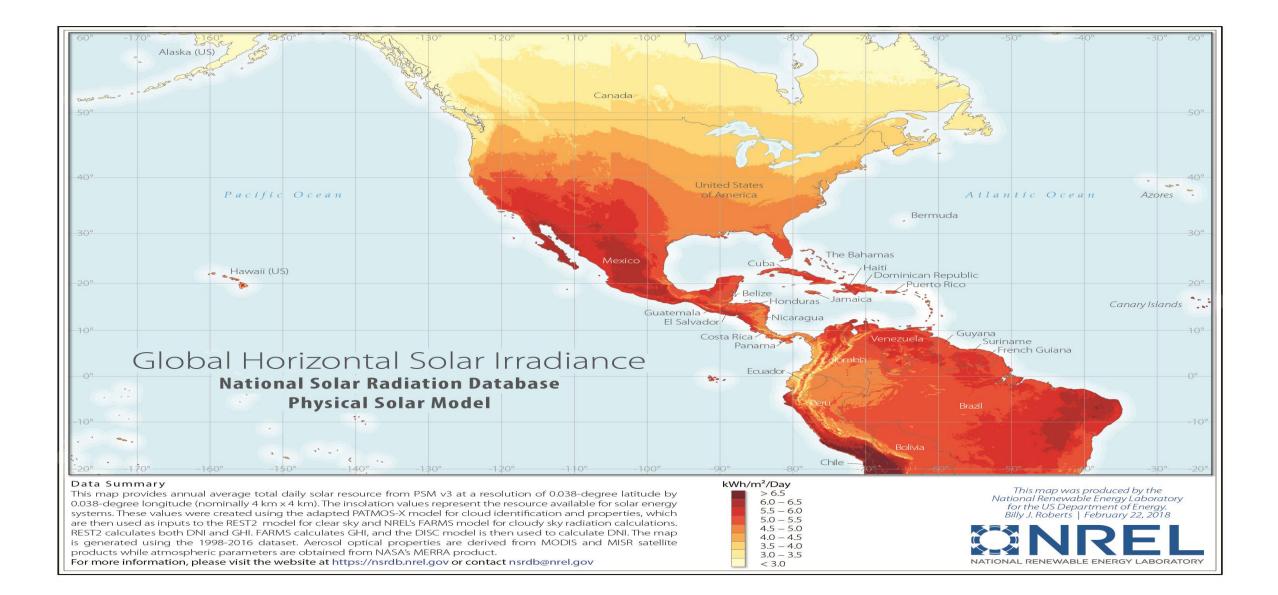
COP of System:

- Highest COP achieved: 0.97
- ► Lowest COP: 0.39
 - Attributed to the initial startup of the system from room temperature
- Typical maximum COP values for TEC modules are approximately 0.4-0.7 without modification

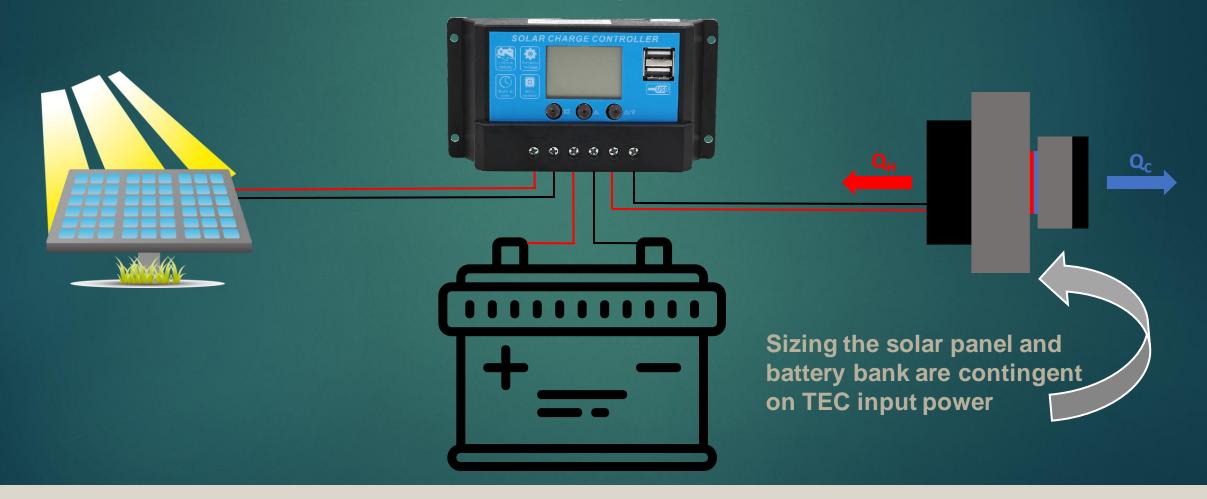
Background

Team & Sponsor

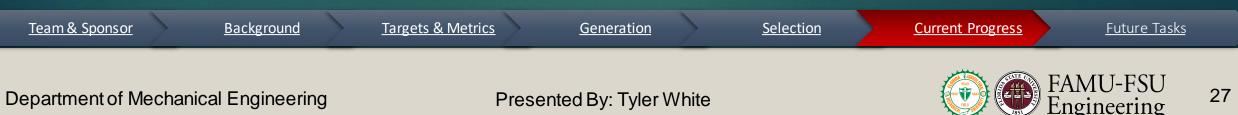

Presented By: Tyler White


Targets & Metrics

Power Generation and Storage System:


- > Research indicates that solar power represents the most viable form of energy production
- > Annual solar irradiance map illustrates that most areas struck by hurricanes have relatively high solar irradiance values
- Conservative estimate of 4.5 kWh/m² per day
- Hurricane season lasts from June 1st November 30th, higher irradiance values than annual estimates will exist

Power Generation System Components



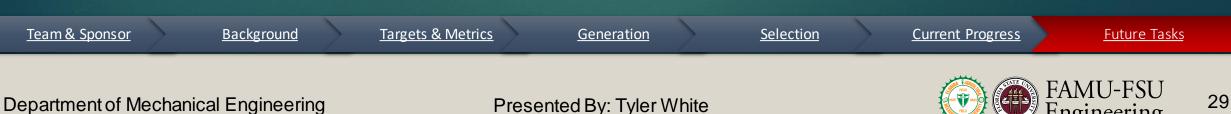
Presented By: Tyler White

Medicine storage redesign:

- > Problem:
 - Locking cylinders are difficult to use
 - Both a twisting and pulling motion
 - Not designed with mobility impairments in mind
- \succ Solution:
 - Sliding drawers for each vial
 - Only one simple motion required
 - Improves storage versatility

Future Tasks

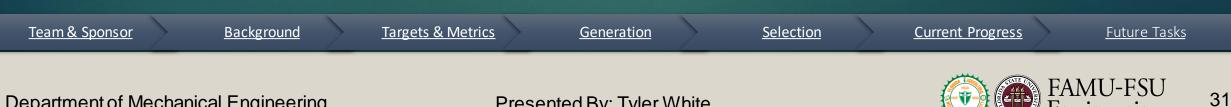
Department of Mechanical Engineering


Presented By: Tyler White

Future Tasks

- Continue testing TEC prototype
 - Improve insulation
 - Reduce input power
 - Improve temperature retention longevity
- Finish redesign of vial storage system
- Finalize power generation and energy storage system design
 - Calculate required battery bank capacity
 - Calculate necessary solar panel rated power >

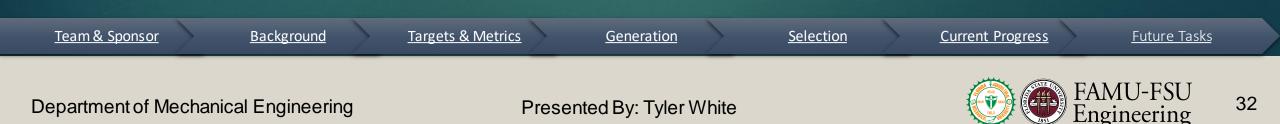
References


- BowStern Marketing Communications. (n.d.). BowStern : Desire to Communicate. Retrieved October 7, 2019, from http://www.bowstern.com/.
- Derzypolski, T. (2018, June 16). An option for the Children's Services Council that could satisfy many: Opinion. Retrieved October 6, 2019, from https://www.tallahassee.com/story/opinion/2018/06/16/option-childrens-services-council-could-satisfy-many/705225002/
- Federal Emergency Management Agency FEMA Seal Plaque (Round). (n.d.). Retrieved October 6, 2019, from https://americanplaquecompany.com/product/federalemergency-management-agency-fema-seal-plaque-round/
- Fink, S. (2018, June 3). Puerto Rico: How Do We Know 3,000 People Died as a Result of Hurricane Maria? Retrieved October 6, 2019, from https://www.nytimes.com/2018/06/02/us/puerto-rico-death-tolls.html
- Medication Storage at Home. (n.d.). Retrieved October 6, 2019, from https://medangel.co/medication-storage-at-home/.
- Moye, D., & McGonigal, C. (2018, March 9). These Stunning GIFs Show St. Martin's Miraculous Recovery From Hurricanes Irma And Maria. Retrieved Ocbber 6, 2019, from https://www.huffpost.com/entry/watch-st-martins-hurricane-recovery-in-these-stunning-before-and-after-images n 5a9ecb1be4b002df2c5e3165.
- Polley, N. (n.d.). Red Cross Helps Missouri Flood Victims. Retrieved October 6, 2019, from https://www.ktts.com/2019/03/31/red-cross-helps-missouri-flood-victims/
- Pulmozyme (dornase alfa) Uses, Dosage, Side Effects. (n.d.). Retrieved October 6, 2019, from https://www.drugs.com/pulmozyme.html.
- Reports: Hurricane Maria makes landfall in Puerto Rico with 155 mph winds. (n.d.). Retrieved October 6, 2019, from https://www.accuweather.com/en/weathernews/reports-hurricane-maria-nears-virgin-islands-puerto-rico-as-winds-reach-175-mph/70002762.
- Taking BYETTA. (n.d.). Retrieved October 6, 2019, from https://www.byetta.com/taking-byetta.html.
- U.S. Department of Defense (DOD). (n.d.). Retrieved October 6, 2019, from http://www.milbadges.com/corps/USA/dod
- Victoza (Liraglutide [rDNA] Injection): Side Effects, Interactions, Warning, Dosage & Uses. (n.d.). Retrieved October 6, 2019, from https://www.rxlist.com/victozadrug.htm.

Team & Sponsor	Background	Targets & Metrics	Generation		Selection	Current Progress	<u>Future Tasks</u>	
Dopartment of Mo	chanical Engineering	D	Drocopted Byr Tyler White			FAMU-FSU		

References (Pictures)

- https://the-isle-dinosaur-game.fandom.com/wiki/Stegosaurus
- https://animalcorner.co.uk/animals/tortoise/
- https://www.gqmiddleeast.com/grooming/how-to-deal-with-excessive-sweating
- https://www.earth.com/news/seals-regulate-oxygen-diving/
- https://www.amazon.com/YKS-TEC1-12706-Thermoelectric-Cooler-Peltier/dp/B007H2IXV2
- https://www.alibaba.com/product-detail/Mini-refrigerator-with-lock-mini-fridge_60539764431.html
- https://www.vortec.com/vortex-tube-short-course
- https://gifimage.net/checklist-gif-7/
- https://www.clipart.email/clipart/solar-energy-panels-clipart-72262.html
- https://www.uihere.com/free-cliparts/solar-power-solar-panels-solar-energy-photovoltaic-system-solar-vector-2353566
- https://www.uihere.com/free-cliparts/battery-charger-battery-charge-controllers-solar-charger-maxim um-power-point-tracking-solar-panels-usb-2703851
- https://www.nrel.gov/gis/solar.html
- http://clipart-library.com/pill-bottle-clipart.html
- https://www.pngguru.com/free-transparent-background-png-clipart-ezvdr



Questions?

➤ Contact Us!

Tyler White (Energy Systems Engineer) - <u>tpw16@my.fsu.edu</u>
 Christian Torpey (Technical Engineer) - <u>cbt13b@my.fsu.edu</u>
 Jesse Arrington (Design Engineer) - <u>jca15@my.fsu.edu</u>
 Matthew Israel (Thermal Process Engineer) - <u>mi16e@my.fsu.edu</u>
 Timothy Willms (Production Engineer) - <u>tjm15m@my.fsu.edu</u>

