

TEAM 513: SAE AERO DESIGN COMPETITION

Team Introductions

Nestor
Aguirre
Aeronautics/
3D Printing
Engineer

Zachary Silver CAD Engineer

Martina Kvitkovicova Electronics Test Engineer

David Litter 3D Printing Engineer

Lopez
Electrical
Design
Engineer

Leah Evans
Aeronautics
Engineer/
Financial
Advisor

Overview

Targets & Metrics

Concept Generation

Concept Selection

Design Progress

Future Work

Sponsor and Advisor

Florida Space Grant Consortium

Seminole RC Club

3D Solutech

Dr. Shih

Providing Funding

Providing Equipment

Providing various Filaments

Providing Technical Knowledge

Overview

Targets & Metrics

Concept Generation

Concept Selection

Design Progress

Future Work

Objective

The objective of this project is to design and manufacture a 3D printed remote controlled (RC) airplane that complies with all rules and regulations for competing in the regular class of the SAE Aero Design East competition.

Overview

Targets & Metrics

Concept Generation

Concept Selection

Design Progress

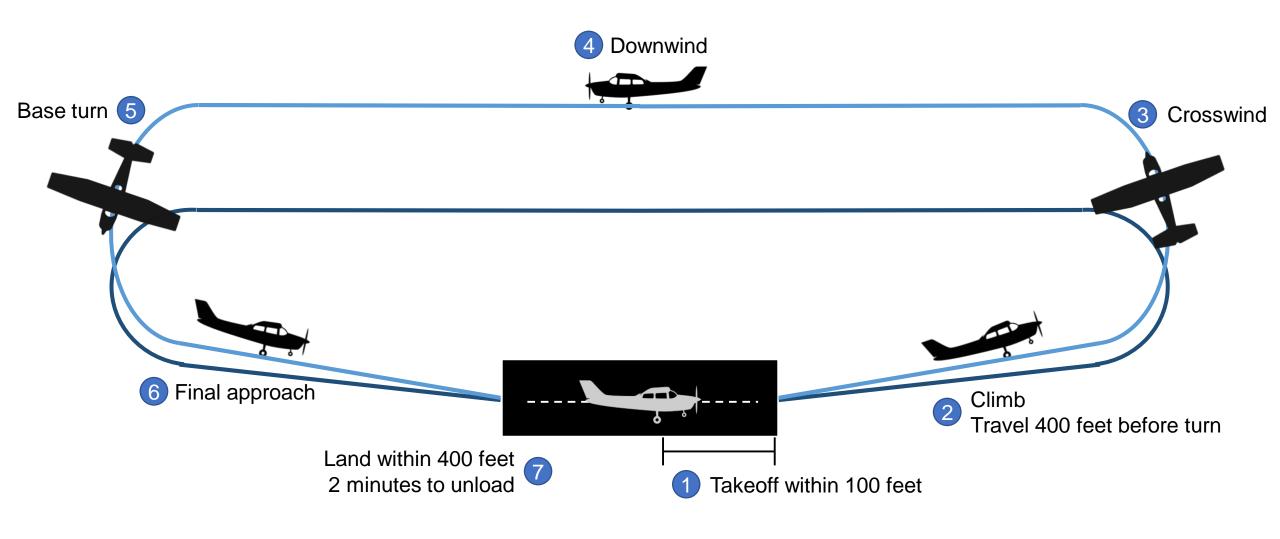
Future Work

Project Summary

- ★ Compete in the SAE Aero Design East Competition in March 2020

Overview

Targets & Metrics


Concept Generation

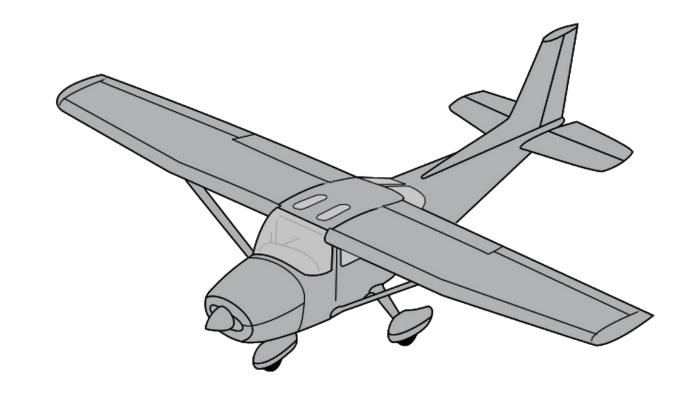
Concept Selection

Design Progress

Future Work

Competition Mission Requirements

Overview Targets & Metrics Concept Generation Concept Selection Design Progress Future Work Review


Department of Mechanical Engineering

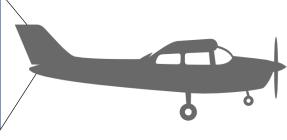
6
Hebert Lopez

Critical Targets and Metrics:

- ★ Relate function to component
- Targets designed to achieve successful and stable flight

Overview

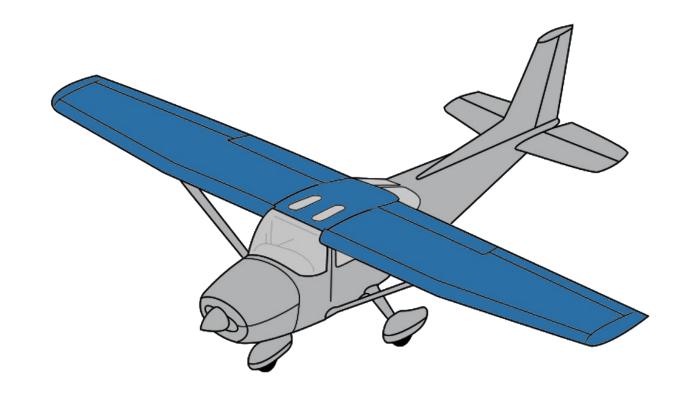
Targets & Metrics


Concept Generation

Concept Selection

Design Progress

Future Work



Generate Lift:

 \star Wing loading: 10 – 20 oz/in²

 \succ Lift coefficient: 1.4 – 2.5

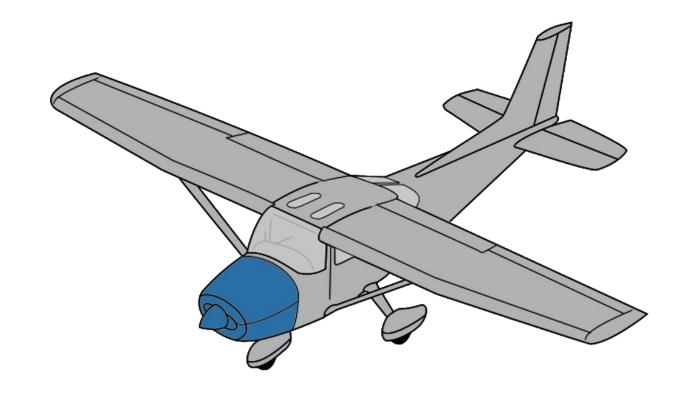
Overview

Targets & Metrics

Concept Generation

Concept Selection

Design Progress


Future Work

Accelerate/Decelerate:

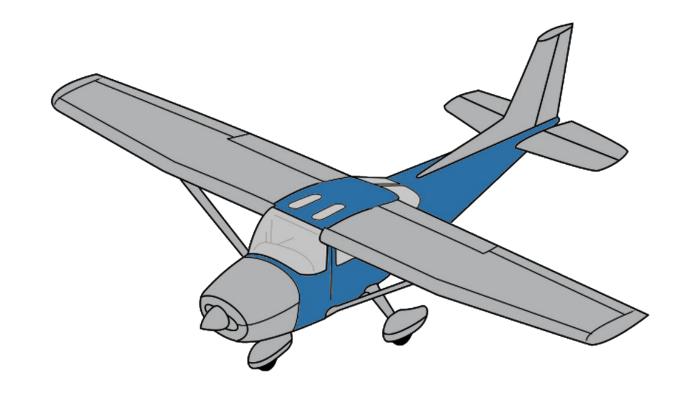
★ Takeoff Speed: 20 – 30 mph

Overview

Targets & Metrics

Concept Generation

Concept Selection


Design Progress

Future Work

Transport Payload:

Overview

Targets & Metrics

Concept Generation

Concept Selection

Design Progress

Future Work

Concept	Generation	Chart
COMCEDE	Generation	Criciria

3D Material	Landing Gear	Wings	Wing Location	Aileron/Flaps	Fuselage	Tail
PLA	Tricycle with Front Wheel	Elliptical	Low Wing	Plain	Flying boat	Conventional
ABS	Tricycle with Tail- Wheel	Tapered	Mid Wing	Split	Double booms	T-Tail
LW-PLA	Four Wheels	Rectangular	High Wing	Slotted	Subsonic	Cruciform
					High Capacity Subsonic	Triple
						Twin
						Boom
						High Boom

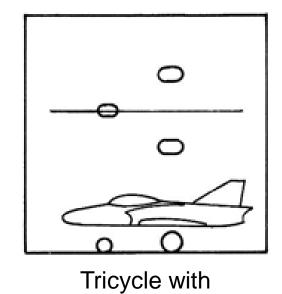
High Boom

Overview

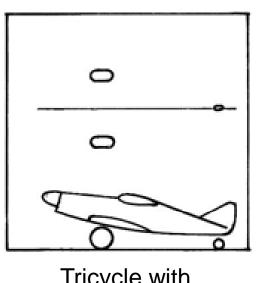
Targets & Metrics

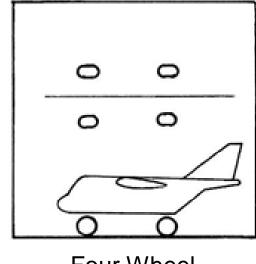
Concept Generation

Concept Selection


Design Progress

Future Work





Landing Gear Configuration

Front Wheel

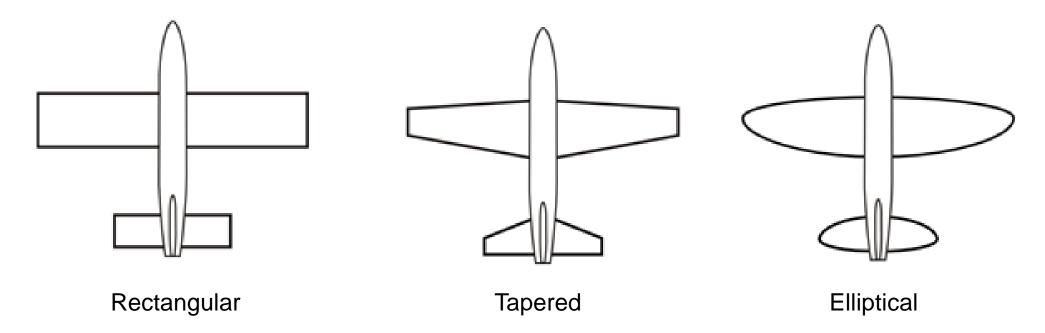
Tricycle with Tail Wheel

Four Wheel

Overview

Targets & Metrics

Concept Generation

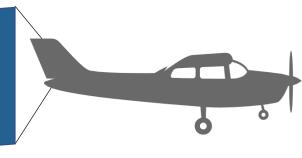

Concept Selection

Design Progress

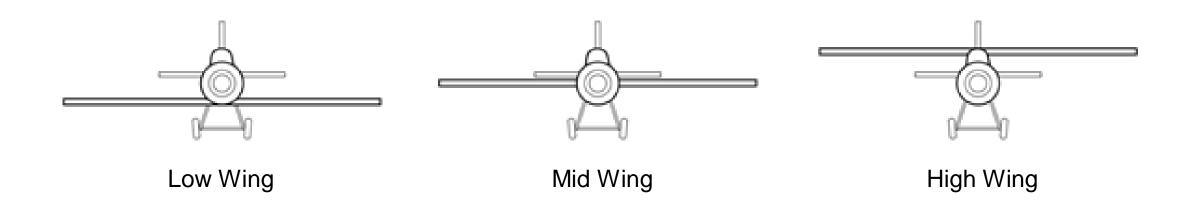
Future Work

Wing Planform

Overview


Targets & Metrics

Concept Generation


Concept Selection

Design Progress

Future Work

Wing Location

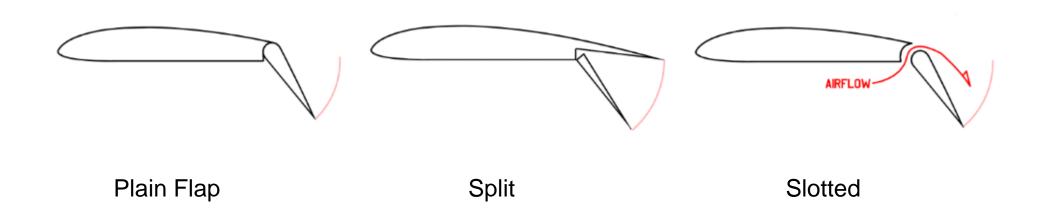
Overview

Targets & Metrics

Concept Generation

Concept Selection

Design Progress


Future Work

FAMU-FSU

Engineering

Aileron and flaps

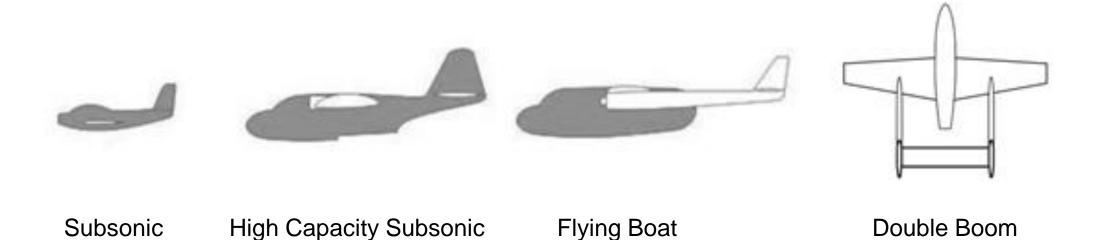
Overview

Targets & Metrics

Concept Generation

Concept Selection

Design Progress


Future Work

FAMU-FSU

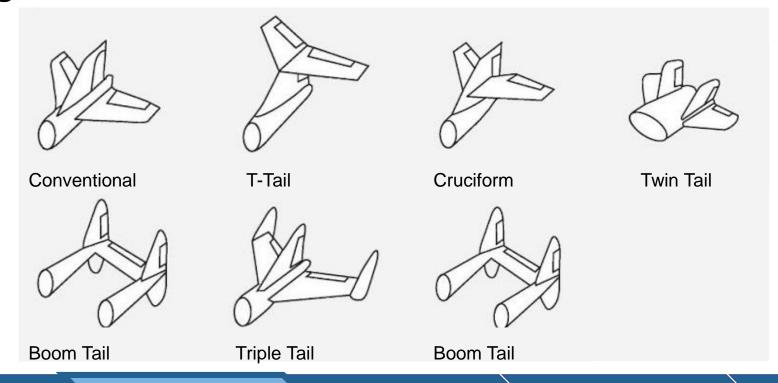
Engineering

Fuselage

Overview

Targets & Metrics

Concept Generation


Concept Selection

Design Progress

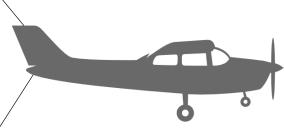
Future Work

Tail Configuration

Overview

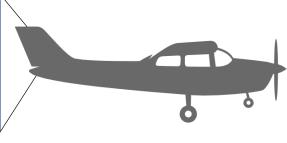
Targets & Metrics

Concept Generation


Concept Selection

Design Progress

Future Work



- Morphological chart method and the crap shoot method
- ✓ Non feasible concepts were eliminated

Concept Selection

- House of Quality showed weight was the most important engineering parameter

Final Pugh Selection Chart

		Concepts			
Selection Criteria	Concept 6	1	3	4	8
Weight		+	-	S	+
Drag	DATUM	+	-	-	S
Wingspan		S	S	-	S
Time to Unload		S	-	+	-
Manufacturing Time		-	S	+	-
Cost		-	S	S	+
# of pluses		2	0	2	2
# of minuses		2	3	2	2

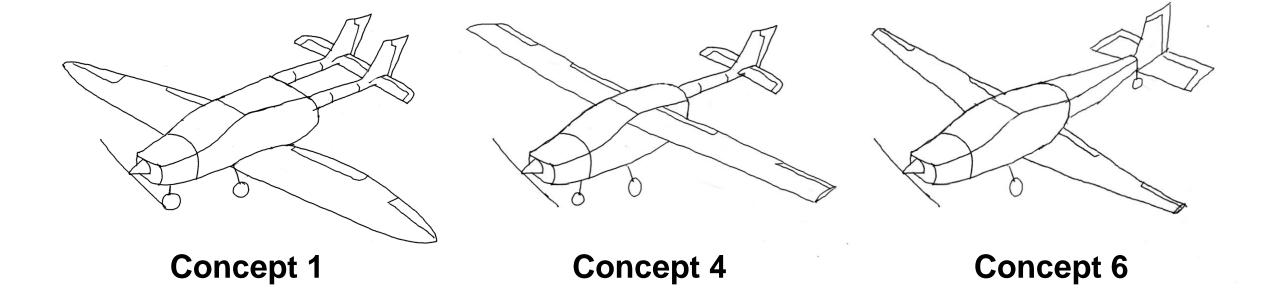
Pugh Chart

Overview

Eliminated Concept 3 & 8. Concept 1, 4, and 6 transfer to AHP.

Concept Generation Concept Selection Design Progress Future Work Review

20
Nestor Aguirre


Design Progress Future Work Review

FAMU-FSU
Engineering

Targets & Metrics

Top Three Concepts

Overview

Targets & Metrics

Concept Generation

Concept Selection

Design Progress

Future Work

Analytic Hierarchy Process

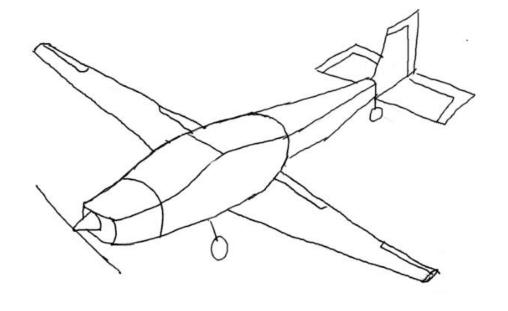
[Final Rating Matrix] ^T				
Selection Criteria	Concept 1 Concept 4		Concept 6	
Drag	0.480	0.115	0.405	
Weight	0.405	0.115	0.480	
Wingspan	0.260	0.106	0.633	
Time to Unload	0.260	0.106	0.633	
Manufacturing Time	0.091	0.455	0.455	
Cost	0.574	0.140	0.286	

Criteria Weights {W}		
	Weight	
Drag	0.369	
Weight	0.212	
Wingspan	0.097	
Time to Unload	0.156	
Manufacturing Time	0.143	
Cost	0.024	

Χ

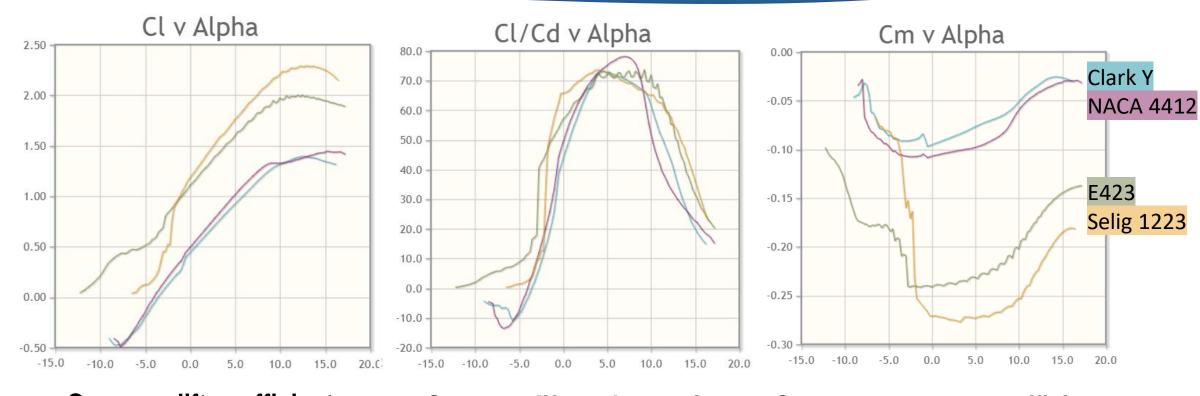
Overview > Targets & Metrics

Concept Generation


Concept Selection

Design Progress

Future Work


Selected Concept: Concept Six

- ★ Tapered Wings

Airfoil Selection

Compare lift coefficient

Compare lift-to-drag ratio

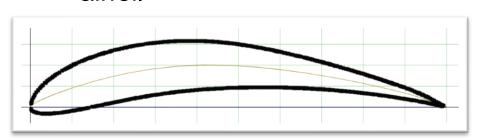
Compare moment coefficient

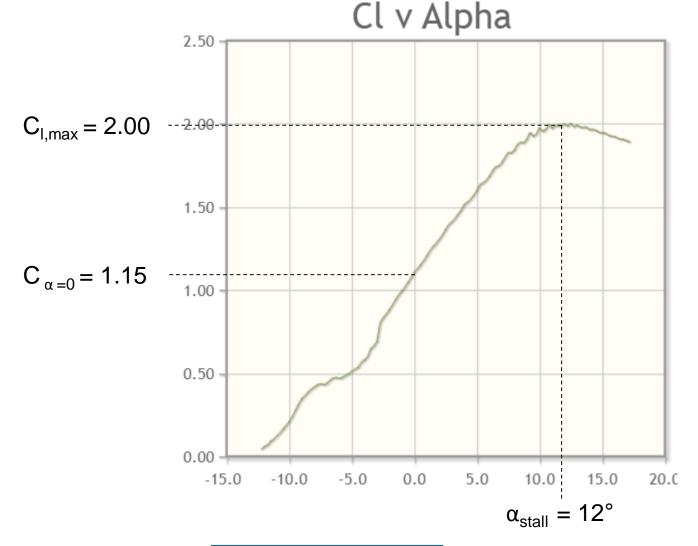
Overview > Targets & Metrics

Concept Generation

Concept Selection

Design Progress


Future Work



Airfoil Selection

- ✓ Selected the Eppler E423
- Satisfies targets for lift coefficient and stall angle of attack
- Designed as a heavy lift UAV airfoil

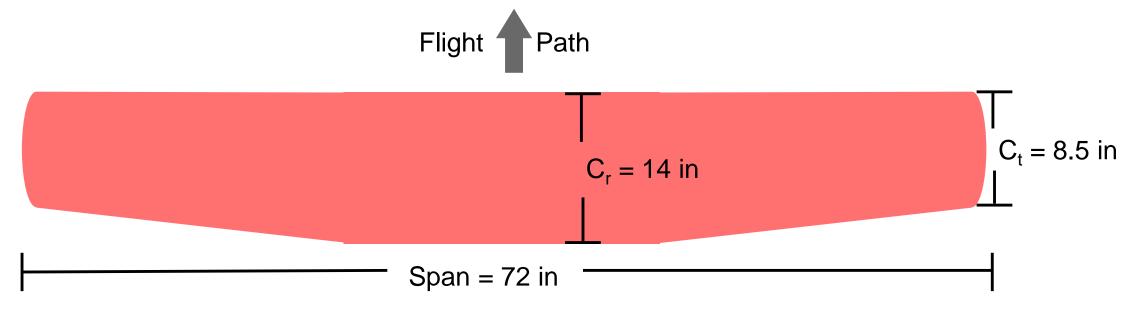
Overview

Targets & Metrics

Concept Generation

Concept Selection

Design Progress


Future Work

Wing Sizing

Overview

Targets & Metrics

Concept Generation

Concept Selection

Design Progress

Future Work

Testing

Thrust Testing (Work in Progress)

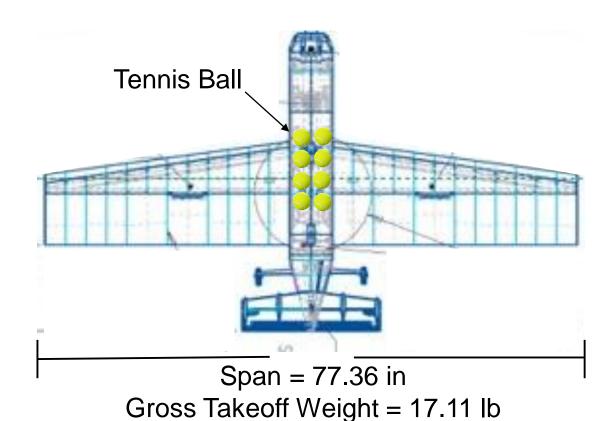
Pivot point Scale

Propeller Balancing (11/02/2019)

Overview

Targets & Metrics

Concept Generation


Concept Selection

Design Progress

Future Work

Lightweight Challenge

Soccer Ball. Span = 72 in Gross Takeoff Weight = 15 lb

Overview

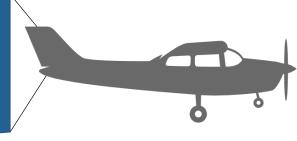
Targets & Metrics

Concept Generation

Concept Selection

Design Progress

Future Work


Future Work

- Construct flight worthy prototype

Future Work

FAMU-FSU
Engineering

Most Important Points

- The goal is to design and manufacture a 3D printed airplane capable of carrying assorted payload.
- 2. Selected concept is rectangular high wing, flying boat fuselage, and conventional tail.
- 3. Completed initial calculations to theoretically verify takeoff capability.
- 4. Flight worthy prototype is planned over holiday break.

Review

Future Work

References

Anderson, J. D. (2016). Fundamentals of Aerodynamics (6th ed.). New York: McGraw-Hill Education.

Flap (Aeronautics). (2019, September 29). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Flap_(aeronautics)

Flight: Tail Designs. (n.d.). Retrieved from what-when-how: http://what-when-how.com/flight/tail-designs/

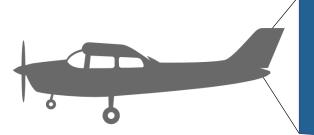
Fuselage . (2019, September 14). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Fuselage

Nicolai, L. M., & Carichner, G. (2010). Fundamentals of Aircraft and Airship Design, Volume I, Aircraft Design. Reston: AIAA.

Özgen, S. (2015, Novemeber). The Philosophy of Airplane Design. Retrieved from Middle East Technical University: http://www.ae.metu.edu.tr/~ae451/landing_gear.pdf

RC Airplanes. (2019). Retrieved from Horizon Hobby: https://www.horizonhobby.com/category/airplanes

SAE International. (2020, September 05). Series Resources 2020 SAE Aero Design Rules. Retrieved from SAE Aero Design:


https://www.saeaerodesign.com/cdsweb/gen/DocumentResources.aspx

Simons, M. (2015). Model Aircraft Aerodynamics. Englad: Special Interest Model Books Ltd.

Staples, G. (2013, July 16). *Propeller Static & Dynamic Thrust Calculation*. Retrieved September 27, 2019, from ElectricRCaircraftGuy:

https://www.electricrcaircraftguy.com/2013/09/propeller-static-dynamic-thrust-equation.html Wing Configuration. (2019, September 9). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Wing configuration

Questions?

Backup Slides

Functional Decomp

)

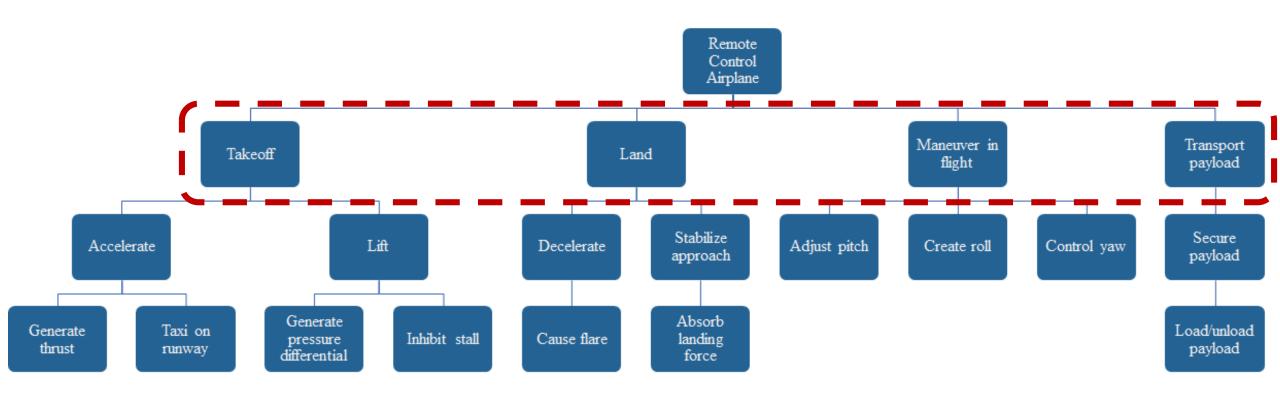
Concept Selection

Concept Generation

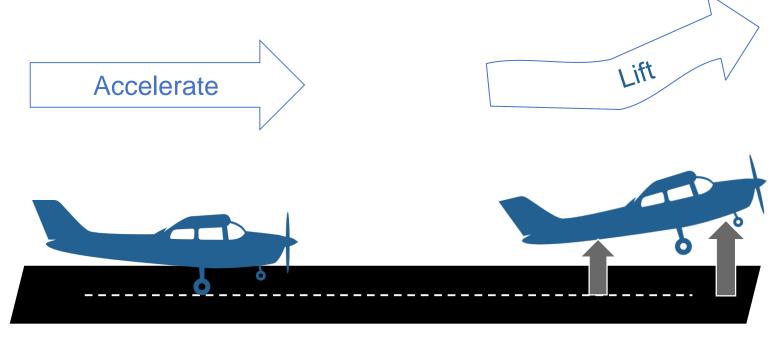
Detailed Concepts

Detailed Math

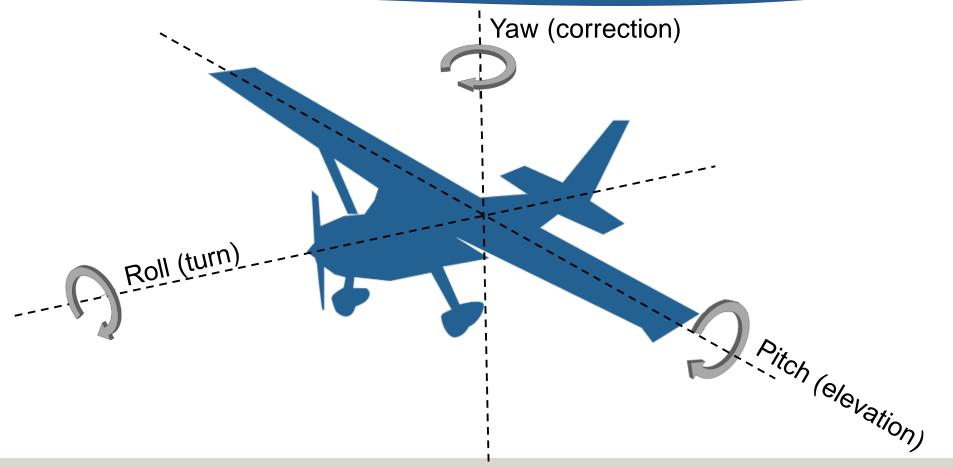
Bill of Materials


Targets and Metrics

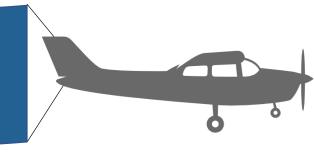
Functional Decomp Backup

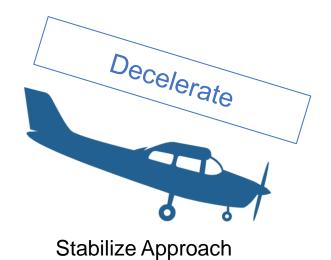

Functional Decomposition

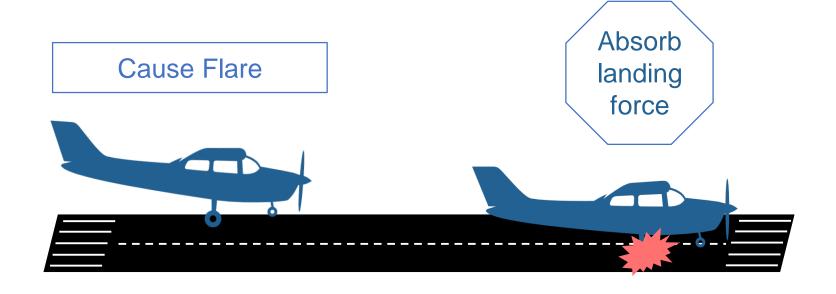
Functional Decomposition: Takeoff

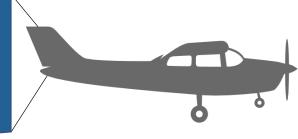

Generate Thrust Taxi on Runway

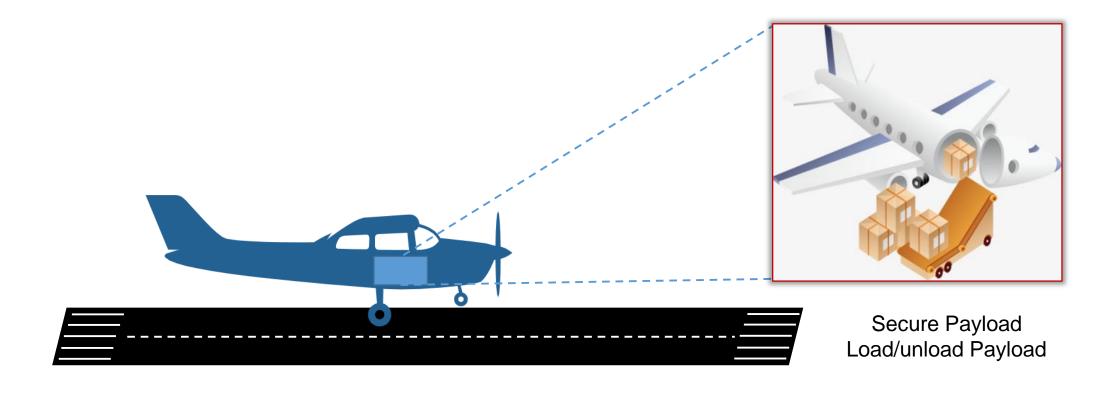
Generate Pressure Differential Inhibit Stall

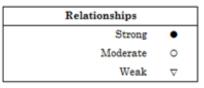

Functional Decomposition: Maneuver in Flight






Functional Decomposition: Land




Functional Decomposition: Transport Payload

Concept Selection Backup

House of Quality

Direction of Improvement			
Maximize	A		
Target	\Q		
Minimize	•		

				Column#	1	2	3	4	5	6	7	8	9	10
				Direction of Improvement	▼	A	A	\Q	A	\Q	▼	▼	▼	▼
Row#	Weight Chart	Relative Weight	CustomerImportance	Customer Requirements (Explicit and Implicit)	Weight(Lb)	Thrust (lbf)	Lift (lbf)	Drag (lbf)	Acceleration (fds^2)	Weight Distribution (lbf(x))	Wingspan (in)	Time to Unload Gargo (sec)	Price (\$)	Manufacturing Time (sec)
1	-	16%	10	Fly	•	•	•	•	•	▽	•	▽	▽	0
2		10%	6	Carry Payload	•	•	•	•	•	•	0	0	▽	0
3		8%	5	Takeoff Distance	•	•	•	•	•	▽	•	0	0	•
4		8%	5	Landing	•	•	0	•	•	▽	▽	▽	0	•
5	•	8%	5	Cost	▽	•	▽	▽	0	0	0	▽	•	0
6	-	15%	9	3-D Printed	•	▽	▽	▽	•	0	•	•	•	•
7	•	10%	6	Flight Stability	0	▽	•	•	0	•	•	•	▽	0
8	•	10%	6	Payload Accesibility	▽	▽	▽	•	0	•	▽	•	▽	•
9	-	16%	10	Safety	•	•	▽	▽	0	0	0	•	0	▽
				Technical Importance Rating	700	629	464.5	590.3	638.7	409.7	554.8	535.5	345.2	509.7
				Relative Weight	13%	12%	9%	11%	12%	8%	10%	10%	6%	9%
				Weight Chart			-			_		•	_	

$Criteria\ 1-Drag$

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	1.460	0.480	3.044
Concept 4	0.346	0.115	3.010
Concept 6	1.230	0.405	3.033
Avg Con: 3.029	Con Index: 0.015	Con Ratio: 0.028	Consistent?: Yes

Criteria 2 – Weight

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	1.230	0.405	3.033
Concept 4	0.346	0.115	3.010
Concept 6	1.460	0.480	3.044
Avg Con: 3.029	Con Index: 0.015	Con Ratio: 0.028	Consistent?: Yes

Analytic Hierarchy Process

Overview of drag and weight criteria

Criteria 3 – Wingspan

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	0.790	0.260	3.033
Concept 4	0.320	0.106	3.011
Concept 6	1.946	0.633	3.072
Avg Con: 3.039	Con Index: 0.019	Con Ratio: 0.037	Consistent?: Yes

Criteria 4 - Time to Unload

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	0.790	0.260	3.033
Concept 4	0.320	0.106	3.011
Concept 6	1.946	0.633	3.072
Avg Con: 3.039	Con Index: 0.019	Con Ratio: 0.037	Consistent?: Yes

Analytic Hierarchy Process

Overview of wingspan and time to unload criteria

Criteria 5 – Manufacturing Time

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	0.273	0.091	3.000
Concept 4	1.364	0.455	3.000
Concept 6	1.364	0.455	3.000
Avg Con: 3.000	Con Index: 0.000	Con Ratio: 0.000	Consistent?: Yes

Criteria 6 - Cost

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	1.853	0.574	3.230
Concept 4	0.427	0.140	3.049
Concept 6	0.897	0.286	3.133
Avg Con: 3.137	Con Index: 0.069	Con Ratio: 0.132	Consistent?: No

Analytic Hierarchy Process

Overview of manufacturing time and cost criteria

AHP Criteria Weights and Consistency Check

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Drag	2.840	0.369	7.697
Wingspan	1.387	0.212	6.554
Time to Unload	0.607	0.097	6.268
Weight	1.044	0.156	6.711
Manufacturing Time	0.962	0.143	6.739
Cost	0.159	0.024	6.591
Avg Con: 6.760	Con Index: 0.152	Con Ratio: 0.122	Consistent?: No

Analytic Hierarchy Process

Overview of criteria weights

[Final Rating Matrix] ^T				
Selection Criteria	Concept 1	Concept 4	Concept 6	
Drag	0.480	0.115	0.405	
Weight	0.405	0.115	0.480	
Wingspan	0.260	0.106	0.633	
Time to Unload	0.260	0.106	0.633	
Manufacturing Time	0.091	0.455	0.455	
Cost	0.574	0.140	0.286	

Criteria W	eights {W}		
	Weight		
Drag	0.369		
Weight	0.212		
Wingspan	0.097		
Time to Unload	0.156		
Manufacturing Time	0.143		
Cost	0.024		

	Alternative Value
Concept 1	0.355
Concept 4	0.162
Concept 6	0.483

Analytic Hierarchy Process

Overview of final selection matrix

Initial Pugh Selection Chart

				(Concept	s		
Selection Criteria	Concept 7	1	2	3	4	5	6	8
Weight		+	-	-	S	S	+	+
Drag		+	S	-	S	-	S	+
Wingspan		+	+	+	S	S	+	+
Time to Unload	DATER	+	-	S	S	-	+	-
Manufacturing Time	DATUM	-	-	+	S	S	+	-
Cost		-	+	S	+	+	S	+
# of pluses		4	2	2	1	1	4	4
# of minuses		2	3	2	0	2	0	2

Pugh Chart 1

Eliminated Concept 2 & 5. Concept 6 becomes new datum.

Final Pugh Selection Chart

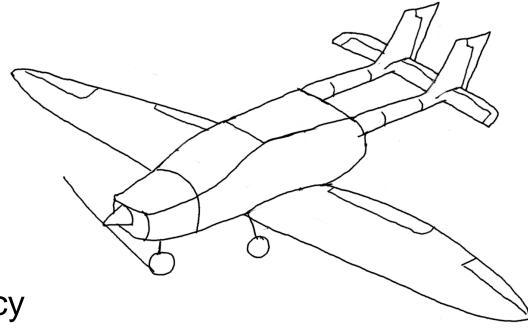
			Conc	epts	
Selection Criteria	Concept 6	1	3	4	8
Weight		+	-	S	+
Drag		+	-	-	S
Wingspan		S	S	-	S
Time to Unload	DATE DA	S	-	+	-
Manufacturing Time	DATUM	-	S	+	-
Cost		-	S	S	+
# of pluses		2	0	2	2
# of minuses		2	3	2	2

Pugh Chart 2

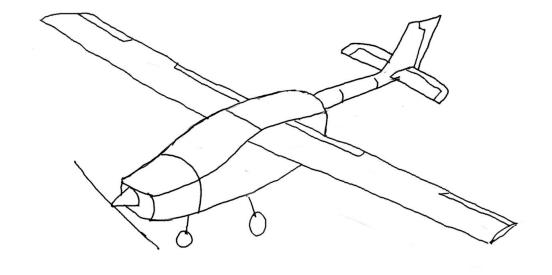
Eliminated Concept 3 & 8. Concept 1, 4, and 6 transfer to AHP.

Concept Generation Backup

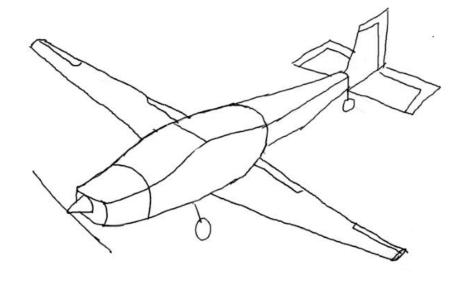
Modular Connections	3D Materials	Propeller Size		Number of Blades	A UV TREE	Landing Gear Mechanism	Landing Gear Suspension	Wings	Wing Location	Wing Orientation	Alleron/Flaps	Motor	Fuselage	Electronics add	Battery	Tail
Compression	PLA	Large Prop	Large Pitch	2 Blade	Tricycle with Front Wheel	Fixed	Fixed	Elliptical	Low Wing	Uniform Leading Edge	Plain	Low ky Rating	Flying boat	Speed Densor	High Battery Capacity	Conventional
Formfit	ABS	Small Prop	Small Pitch	3 Blade	Tricycle with Tail-Wheel	Retractable	3D Printed Flexible	Tapered	Mid Wing	Swept	Split	High kv Rating	Double booms	Gyroscope	Low Batter Capacity	T-Tail
Glue	LW-PLA			4 Blade	Four Wheels		Metal Fleible	Rectangular	High Wing		Slotted		Symmetric from side view	Camera	Higher Ampacity	Cruciform
Fasteners	TPU				Ski-Plane		Shocks	Inverted			Fowler		SubSonics	Illumination	Appropriate C rating	Dual
Japanese glue free joints	PP				45		42	Winglets			Double-Slotted Fowler		Super Sonic	Extra Battery		Triple
T-joint glued form fit								Triangular			Junkers		High capacity sub sonic	Special Speed Controller		v
Soldering											Gouge		High manurability super sonic			Inverted V
											Fairey- Youngman					Inverterd Y
											Zap					Twin
3		-			1						Krueger					Boom
ĝ.	3	2			8						Gurney			Š S		High Boom
											Leading Edge Droop					Multiple-plane tail
											Handley-page					


Concept Generation

Excel table which combined morphological chart and crap shoot method to generate 100 concepts


Detailed Concept Backup

Concept One


Concept Four

- Light weight PLA
- ✓ Slotted flap increases lift and decreases drag
- ★ Rectangular wing is the least efficient design

Concept Six

- ✓ Increase the lift
- ∠ Light weight PLA

Detailed Math Backup

Takeoff Calculation

Takeoff Ground Distance:
$$S_G = \int_0^{V_{\text{TO}}} \frac{V dV}{a} = \frac{1}{2} \int_0^{V_{\text{TO}}} \frac{dV^2}{a}$$

Takeoff Velocity:
$$V_{\text{TO}} = 1.2 \ V_{\text{stall}} = 1.2 \sqrt{\frac{W_{\text{TO}}}{S_{\text{ref}}}} \frac{2}{\rho C_{L_{\text{max}}}}$$

Command Window

For an airplane with 15.000 lb weight, 72.000 in wingspan, and 14.000 in chord length yields 7.000 ft^2 wing area, 5.143 aspect ratio, and 34.286 oz/in^2 wing loading

The required velocity for take off is 34.441793 ft/s or 23.483034 mph

The required ground distance for take off considering thrust is 32.506 ft
The above doesnt include drag, and thrust is a rough estimate at 8.500000 in the calculation

The required ground distance traveled for take off considering lift and drag is 49.665579 ft

Bill of Materials Backup

	Items	Category	\$ / Unit	Qty	Retail Price	Price V	Wt. / Unit [oz]	Total Wt. [oz]	Dimensions / Specs	Source	Purchased/Printed	Need By Date	Received	Completition Percentage	Completed
	FlightLine RC 5055-390kV Brushless Motor	Propulsion	Legacy	1	\$59.99	\$0.00	14.460	14.460	3.14" x 1.97 "	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	E-Flite Power 90 Brushless Outrunner Motor 325Kv	Propulsion	Legacy	1	\$129.99	\$0.00	15.800	15.800	diameter: 2.21" length: 2"	Link	No	11/27/2019	10/25/2019	100.00%	YES
	ADMIRAL 6s, 4000 mAh, 40 C, 22.2 V Battery	Power	Legacy	1	\$79.99	\$0.00	21.090	21.090	5.51" x 1.77" x 1.65"	Link	No	11/27/2019	9/6/2019	100.00%	YES
	Spare Battery	Power	\$79.99	1	\$79.99	\$79.99	21.090	21.090	5.51" x 1.77" x 1.65"	Link	No	11/27/2019		92.31%	NO
	Prop Adapters: Power 90	Fastener	\$8.55	2	\$17.09	\$17.09			6mm propeller adapter for E-flite 90 motor	Link	10/31/2019	11/27/2019		76.92%	NO
S	X-Mount/Hardware: Power 90, Motor mounting hardware	Fastener	\$14.24	1	\$14.24	\$14.24	0.120	0.120	3.90" x 2.40" x 0.49"	Link	10/31/2019	11/27/2019		92.31%	NO
O n i.	Futaba 6J 6-Channel S-FHSS System	Control	Legacy	1	\$179.99	\$0.00	-	_	4.8" x 10.2 x 16"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
Electron	Futaba R2106GF 6-Channel S-FHSS Micro Receiver	Control	\$29.99	1	\$29.99	\$29.99	0.140	0.140	1.5" x 0.85" x 0.40"	Link	No	11/27/2019		92.31%	NO
ä	ZTW GECKO 85A ESC WITH 8A SBEC WITH XT-60 CONNECTOR	Control	Legacy	1	\$49.36	\$0.00	2.650	2,650	2.59" x 1.29" x 0.62"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	Hitec HS-311 Plastic Gear Standard Servo	Control	\$8.99	7	\$62.93	\$0.00	1.510	10.570	1.57" x 0.78" x 1.44"	Link	No	11/27/2019		92.31%	NO
	Red Arming Plug	Safety	\$6.47	1	\$6,47	\$6,47	0.130	0.130	0.28" x 0.50" x 0.5"	Link	No	11/27/2019		92.31%	NO
	SAE 2019 Power Limiter V2 regular class 1000W	Safety	Legacy	1	\$75.00	\$0.00	0.720	0.720	0.5" x 0.5" x 2.00"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	Cell Meter Battery Capacity Checker	Safety	\$8.99	1	\$8.99	\$8.99	1.760	1.760	3.26" x 0.98"	Link	10/28/209	11/27/2019	10/30/2019	100.00%	YES
	centificial ballery capacity checker	Sarety	ψ0.>>	-	ψ0.>>	ψ0.>>	1.700	1.700	3,20 % 0,50	<u> </u>	10/20/207	11/2//2019	10/30/2019	0.00%	120
	Ailerons	Wing		2		\$0.00		0.000		N.A	No	11/27/2019		69,23%	NO
	Flap	Wing		2		\$0.00		0,000	1	N.A	No	11/27/2019		61.54%	NO
	Hinges	Wing		4		\$0.00		0.000	1	N.A	No	11/27/2019		61.54%	NO
	Support Spar	Wing		2		\$23.58		0.000	1	Link	No	11/27/2019		61.54%	NO
	** *								1					0.00%	
	Cargo Bay	Fuselage		1		\$0.00		0.000		N.A	No	1/6/2020		61.54%	NO
50	Nose Cone	Fuselage		1		\$0.00		0,000	The \$/unit and unit weight will be determined once the	N.A	No	1/6/2020		61.54%	NO
3D Printing	Electronics Bay	Fuselage		1		\$0.00		0.000	airplane CAD is created. It is assumed all these parts will be	N.A	No	1/6/2020		61.54%	NO
į.	Hinges	Fuselage		4		\$0.00		0.000	printed with the Light Weight Polylactic Acid.	N.A	No	1/6/2020		61.54%	NO
ΞĞ														0.00%	NO
, m	Elevator	Tail		2		\$0.00		0.000		N.A	No	1/6/2020		61.54%	NO
	Rudder	Tail		1		\$0.00		0.000		N.A	No	1/6/2020		61.54%	NO
	Vertical Stabilizer	Tail		1		\$0.00		0.000		N.A	No	1/6/2020		61.54%	NO
	Horizontal Stabilizer	Tail		1		\$0.00		0.000		N.A	No	1/6/2020		61.54%	NO
	Hinges	Tail		4		\$0.00		0.000		N.A	No	1/6/2020		61.54%	NO
	Dubro Super Lite Wheels 3"	Wheel	Legacy	2	\$8.99	\$0.00	0.244	0.488	OD = 3" ID axle = 0.178"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	Sullivan SkyLite Wheel w/Aluminum Hub 4-1/2"	Wheel	Legacy	2	\$38.66	\$0.00	2.230	4.460	OD = 4.5" ID axle= 1.6"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
Gea	Dubro Axle Shaft	Fastener	Legacy	2	\$6.79	\$0.00	1.200	2.400	OD = 0.1875" Length axle= 2"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
50	Dubro Tail Wheel Assembly	Fastener	\$3.99	1	\$3.99	\$3.99	0.176	0.176	For 1" dubro tail wheel	Link	No	11/27/2019		92.31%	NO
퍨	Dubro Tail Wheel 1"	Wheel	\$2.48	1	\$2.48	\$2.48	0.680	0.680	OD = 1" for tail wheel assembly	Link	No	11/27/2019		92.31%	NO
Ę															
	[Shocks, if needed]											1/6/2020		15.38%	
	[Shocks accessories, if needed]											1/6/2020		15.38%	
	Size Five Soccer Ball	Cargo	\$15.00	1	\$15.00	\$15.00	15.000	15.000	100% Butylene Size 5 ball (official size)	Link	No	11/27/2019		92.31%	NO
urgc	Velcro Bands	Fastener	\$0.53	4	\$2.10	\$2.10	0.200	0.800	General Purpose Peel & Stick	Link	No	11/27/2019		92.31%	NO
Cai	Steel Plates	Cargo	Legacy	6	\$8.35	\$0.00	16.000	96.000	A36 Steel Plate	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	Metal Screw	Fastener	\$0.20	6	\$1.18	\$1.18	0.071	0.423	#8 x 1-1/2 in. Phillips Flat Head Plated Sheet Metal Screw	Link	No	11/27/2019		92.31%	NO
	Flite Test Water-Resistant Foam Board By Adams	Prototype	\$2.99	10	\$2.99	\$29.90	4.021	40.212	L = 20" W = 30" thick = 3/16"	Link	No	11/27/2019		92.31%	NO
	Gorilla Glue Hot Glue Sticks	Prototype	\$0.13	30	\$3.97	\$3.97	0.149	4.480	8" tall multipurpose temp range	Link	No	11/26/2019		92.31%	NO
	Polylactic Acid	Filament	\$0.33	3	\$20.99	\$0.00	105.900	317.700	35.3 Oz	Link	Sponsered	11/1/2019	9/26/2019	100.00%	YES
	Acrylonitrile Butadiene Styrene	Filament	\$0.20	5	\$18.99	\$0.00	176.500	882.500	35.3 Oz	Link	Sponsered	11/1/2019	9/26/2019	100.00%	YES
	Flexible	Filament	\$0.50	2	\$26.99	\$0.00	70.600	141.200	35.3 Oz	Link	Sponsered	11/1/2019	9/26/2019	100.00%	YES
5.0	Light Weight Polylactic Acid	Filament	\$1.09	2	\$57.79	\$54.00	52.800	105.600	26.4 Oz	Link	9/6/2019	11/1/2019	9/20/2019	100.00%	YES
Testing	Loctite Gel Control 4g Super Glue	Fastener	\$10.64	2	\$2.98	\$2.98	0.280	0.560	0.14 Oz	Link	No	11/1/2019		92.31%	NO
Hei-	APC Electric Propeller 16x8E	Propulsion	\$8.42	1	\$8.42	\$8.42	1.830	1.830	Diameter = 16" Pitch = 8"	Link	10/30/2019	11/1/2019	11/1/2019	100.00%	YES
	APC Electric Propeller 18x8E	Propulsion	\$11.13	1	\$11.13	\$11.13	3.030	3.030	Diameter = 18" Pitch = 8"	Link	10/31/2019	11/1/2019		92.31%	NO
	APC Electric Propeller 18x10E	Propulsion	Legacy	1	\$11.13	\$0.00	2.570	2.570	Diameter = 18" Pitch = 10"	Link	Legacy	11/1/2019	11/1/2019	100.00%	YES
	Door Hinge	Thrust Test	\$1.34	1	\$1.34	\$1.34	0.700	0.700	3-1/2 in. Satin Brass Square Corner Door Hinge	Link	10/2/2019	11/1/2019	10/2/2019	100.00%	YES
	Poplar Board	Thrust Test	Legacy	1	\$4.71	\$0.00	17.000	17.000	1 in x 4 in	Link	Legacy	11/1/2019	10/2/2019	100.00%	YES

Bill of Materials

	Items	Category	Qty	Retail Price	Price	Total Wt. [oz]	% Complete	Completed
	FlightLine RC 5055-390kV Brushless Motor	Propulsion	1	\$59.99	\$0.00	14.460	100.00%	YES
	E-Flite Power 90 Brushless Outrunner Motor 325Kv	Propulsion	1	\$129.99	\$0.00	15.800	100.00%	YES
	ADMIRAL 6s, 4000 mAh, 40 C, 22.2 V Battery	Power	1	\$79.99	\$0.00	21.090	100.00%	YES
	Spare Battery	Power	1	\$79.99	\$79.99	21.090	92.31%	NO
	Prop Adapters: Power 90	Fastener	2	\$17.09	\$17.09		76.92%	NO
ics	X-Mount/Hardware: Power 90, Motor mounting hardware	Fastener	1	\$14.24	\$14.24	0.120	92.31%	NO
Electronics	Futaba 6J 6-Channel S-FHSS System	Control	1	\$179.99	\$0.00	-	100.00%	YES
ecti	Futaba R2106GF 6-Channel S-FHSS Micro Receiver	Control	1	\$29.99	\$29.99	0.140	92.31%	NO
豆	ZTW GECKO 85A ESC WITH 8A SBEC WITH XT-60 CONNECTOR	Control	1	\$49.36	\$0.00	2.650	100.00%	YES
	Hitec HS-311 Plastic Gear Standard Servo	Control	7	\$62.93	\$0.00	10.570	92.31%	NO
	Red Arming Plug	Safety	1	\$6.47	\$6.47	0.130	92.31%	NO
	SAE 2019 Power Limiter V2 regular class 1000W	Safety	1	\$75.00	\$0.00	0.720	100.00%	YES
	Cell Meter Battery Capacity Checker	Safety	1	\$8.99	\$8.99	1.760	100.00%	YES

Bill of Materials: Electronics

	ы	D
	11	
	nt	
٠	Ę	
۱	<u> </u>	
1	\exists	

Items	Category	Qty	Retail Price	Price	Total Wt. [oz]	% Complete	Completed
Ailerons	Wing	2		\$0.00	0.000	69.23%	NO
Flap	Wing	2		\$0.00	0.000	61.54%	NO
Hinges	Wing	4		\$0.00	0.000	61.54%	NO
Support Spar	Wing	2		\$23.58	0.000	61.54%	NO
						0.00%	
Cargo Bay	Fuselage	1		\$0.00	0.000	61.54%	NO
Nose Cone	Fuselage	1		\$0.00	0.000	61.54%	NO
Electronics Bay	Fuselage	1		\$0.00	0.000	61.54%	NO
Hinges	Fuselage	4		\$0.00	0.000	61.54%	NO
						0.00%	NO
Elevator	Tail	2		\$0.00	0.000	61.54%	NO
Rudder	Tail	1		\$0.00	0.000	61.54%	NO
Vertical Stabilizer	Tail	1		\$0.00	0.000	61.54%	NO
Horizontal Stabilizer	Tail	1		\$0.00	0.000	61.54%	NO
Hinges	Tail	4		\$0.00	0.000	61.54%	NO

Bill of Materials: 3D Printing

anding Gear
La

	Items	Category	Qty	Retail Price	Price	Total Wt. [oz]	% Complete	Completed
	Dubro Super Lite Wheels 3"	Wheel	2	\$8.99	\$0.00	0.488	100.00%	YES
_	Sullivan SkyLite Wheel	Wheel	2	\$38.66	\$0.00	4.460	100.00%	YES
Gear	Dubro Axle Shaft	Fastener	2	\$6.79	\$0.00	2.400	100.00%	YES
	Dubro Tail Wheel Assembly	Fastener	1	\$3.99	\$3.99	0.176	92.31%	NO
anding,	Dubro Tail Wheel 1"	Wheel	1	\$2.48	\$2.48	0.680	92.31%	NO
Lan								
	[Shocks, if needed]						15.38%	
	[Shocks accessories, if needed]						15.38%	

Bill of Materials: Landing Gear

	Items	Category	Qty	Retail Price	Price	Total Wt. [oz]	% Complete	Completed
	Size Five Soccer Ball	Cargo	1	\$15.00	\$15.00	15.000	92.31%	NO
rgo	Velcro Bands	Fastener	4	\$2.10	\$2.10	0.800	92.31%	NO
Ca	Steel Plates	Cargo	6	\$8.35	\$0.00	96.000	100.00%	YES
	Metal Screw	Fastener	6	\$1.18	\$1.18	0.423	92.31%	NO

Bill of Materials: Cargo

b
7
PST
_ a∟
r -

	Items	Category	Qty	Retail Price	Price	Гotal Wt. [oz]	% Complete	Completed
-	Flite Test Water-Resistant Foam Board	Prototype	10	\$2.99	\$29.90	40.212	92.31%	NO
	Gorilla Glue Hot Glue Sticks	Prototype	30	\$3.97	\$3.97	4.480	92.31%	NO
	Polylactic Acid	Filament	3	\$20.99	\$0.00	317.700	100.00%	YES
	Acrylonitrile Butadiene Styrene	Filament	5	\$18.99	\$0.00	882.500	100.00%	YES
	Flexible	Filament	2	\$26.99	\$0.00	141.200	100.00%	YES
50	Light Weight Polylactic Acid	Filament	2	\$57.79	\$54.00	105.600	100.00%	YES
ı esung	Loctite Gel Control 4g Super Glue	Fastener	2	\$2.98	\$2.98	0.560	92.31%	NO
res	APC Electric Propeller 16x8E	Propulsion	1	\$8.42	\$8.42	1.830	100.00%	YES
	APC Electric Propeller 18x8E	Propulsion	1	\$11.13	\$11.13	3.030	92.31%	NO
	APC Electric Propeller 18x10E	Propulsion	1	\$11.13	\$0.00	2.570	100.00%	YES
	Door Hinge	Thrust Test	1	\$1.34	\$1.34	0.700	100.00%	YES
	Poplar Board	Thrust Test	1	\$4.71	\$0.00	17.000	100.00%	YES

Bill of Materials: Testing

Sum total from each column	Value
Total # of parts	130
Total retail value of parts	\$1,052.99
Total expense to T513 (some parts were sponsored or reused from last	\$316.84
Total weight of parts (units: lb)	107.896
Total weight of electronics (units: lb)	5.533
Total weight of airplane components so far (units: lb)	4.847
BoM Progress Tracking	Value
# of parts left to order and/or 3d print	27
# of parts at 100% completion	19
# of parts in BoM	49
Total BoM % completion	39%

Bill of Materials: Project Progress

Targets and Metrics Backup

Function	Metric	Target	Method of Validation	Tools for Validation			
	Accelerate						
	Force	10 lbf	Experimental	Force Gauge/ Scale			
Generate Thrust	Propeller Size	14in - 18in	Physical Experiment and Computations	Test sized propellers to determine maximum thrust and compare against DriveCalc program			
	L	390 Kv Rat ing	Given by Manufacture	Manufacture Validated			
	Electric Motor Maximum Power	950W	Experimental	Apply current and measure voltage with a voltmeter			
	Propulsion System Ba ttery Voltage	22.2 V	Experimental	Voltmeter			
Taxi on Runway	Angular Steering for Front Wheel	-60° to 60°	Experimental	Attach to front wheel, test total rotation, and record time			

Function	Metric	Target	Method of Validation	Tools for Validation		
	Accelerate					
Apply Throttle	Velocity for Takeoff	30 mph	Theoretical Calculations	MATLAB, PropCal 3.		
	Ground Distance for Takeoff	Less than 100 ft	Theoretical and Experimental	MATLAB and flight testing		
	Propulsion system battery capacity	4000 mAh	Given by manufacturer	Manufacturer Validate d		
	Propulsion System battery duration	10 minutes	Theoretical Calculations	Determined by current drawn by propulsion system		
	Power limiter top limit	1000 W	Competition Requirement	Manufacturer Validated		

Lift				
	Angle of Attack	2-5 Degrees	Database Comparative Analysis	xlfr5
Generate Pressure	Coefficient of Lift	Greater than 1.0	Theoretical Calculations	MATLAB
Differential	Coefficient of Drag	Less than 1.0	Theoretical Calculations	MATLAB
	Wingspan	60 – 120 in	Experimental and Theoretical Calculations	Prototyping, Solid works simulations, and MATLAB
	Wing Loading	10 –20 oz/ft²	Finite Element Analysis	MATLAB, SOLIDWORKS Simulation
Structure	Gross-take-off weight	Less than 55 lbs	Theoretical Calculations, Physical Experimentation	SOLIDWORKS Simulation, digital scale
Inhibit Stall	Stall Speed	Greater than 30mph	Theoretical Calculation	MATLAB simulation
	Stall Angle of Attack	Greater than 25 Degrees	Experimentation	Flight testing and XLFR5

Function	Metric	Target	Method of Validation	Tools for Validation
		Decelera	te	
Reduce throttle	Velocity for Landing	30mph	ns and	MATLAB, Prop Calc 3.0, testing motor and flight testing
Engage Flaps	Time to deploy	1 Second	Experimental	Stopwatch
	Angle of flaps	0°- 30°		SOLIDWORKS Simul ations
Stabilize approach				
Absorb Landing Force	Force	2x Weight (lbf)	Theoretical	MATLAB and FEA

Function	Metric	Target	Method of Validation	Tools for Validation		
	Maneuver in Flight					
	Servo Motor Angular Speed	1 *	Given by Manufacture	Manufacturer Validated		
Servo Motors	Angular Pitch Positio n	-60° to 60°	Experimentally Test	Attach to control surface, test total rotation, and record time		
	Angular Roll Position	-60° to 60°	Experimentally Test	Attach to control surface, test total rotation, and record time		
	Angular Yaw Position	-60° to 60°	Experimentally Test	Attach to control surface, test total rotation, and record time		

Function	Metric	Target	Method of Validation	Tools for Validation			
	Secure Cargo						
Load/Unload Payload	Time	2 Minutes	Human	Load/unload payload from cargo area with hands			
	Force	5 lbf	Experimental				
Carry Payload	Radio System Battery Current Capacity	1000 mAh	Rule Requirement	Manufacturer Validated			
	Radio System Battery Time Duration	6 min	Theoretical Calculations	Determined by current drawn by controller			
		Controll	er				
Radio Control System	Wavelength Frequency	2.4 GHz	Competition Require ment	Manufacturer Validated			
	Electronic speed controller continuous current	85 A	Given by Manufacturer	Manufacturer Validated			

