

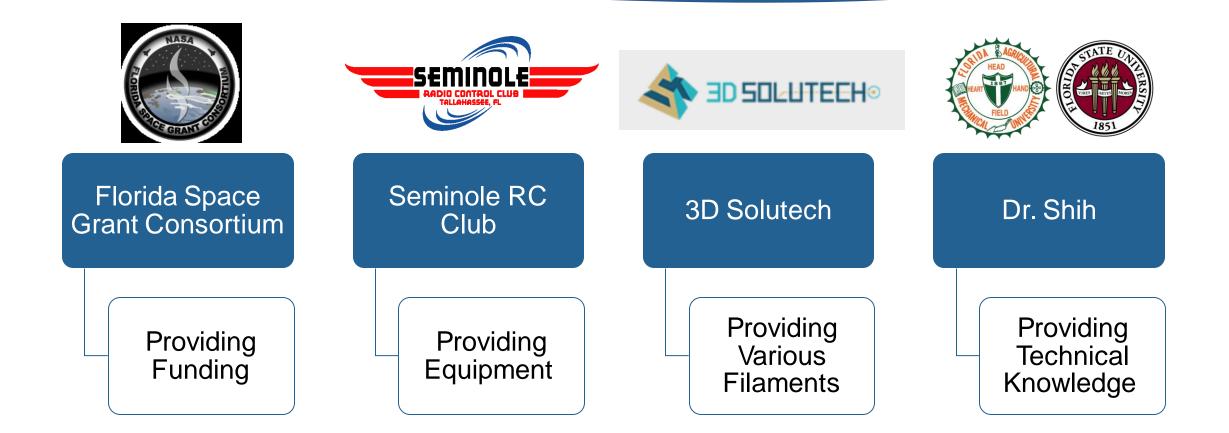
Team Introductions

Nestor Aguirre Aeronautics/ 3D Printing Engineer

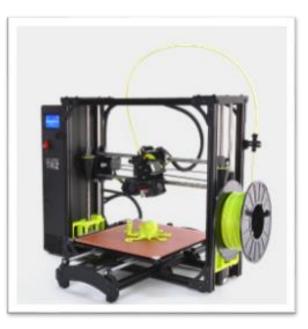
Zachary Silver CAD Engineer

Martina Kvitkovicova Electronics Test Engineer

David Litter 3D Printing Engineer

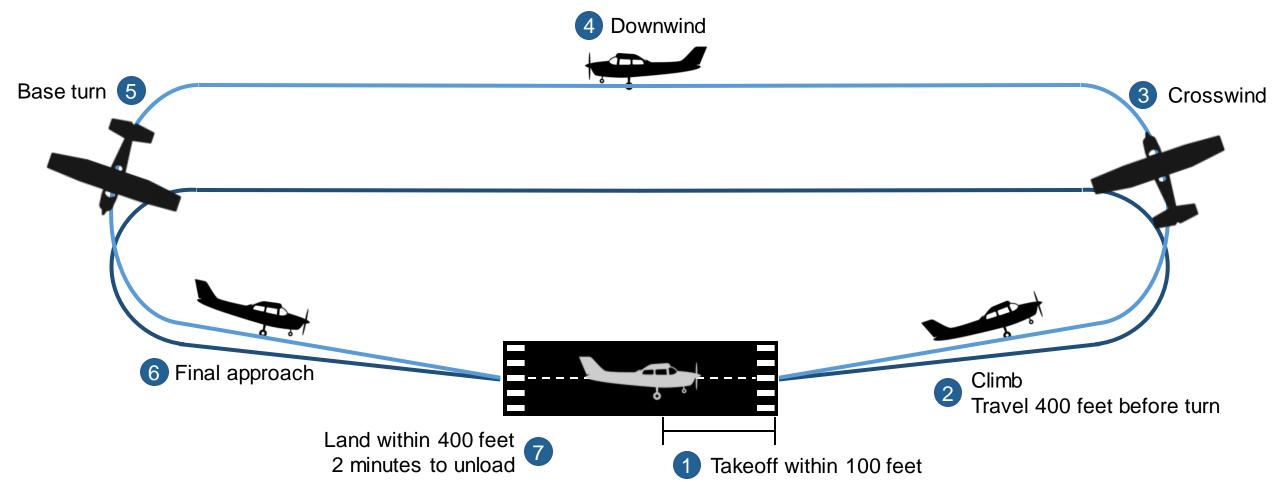

Hebert Lopez Electrical Design Engineer

Leah Evans Aeronautics Engineer/ Financial Advisor


Sponsor and Advisor

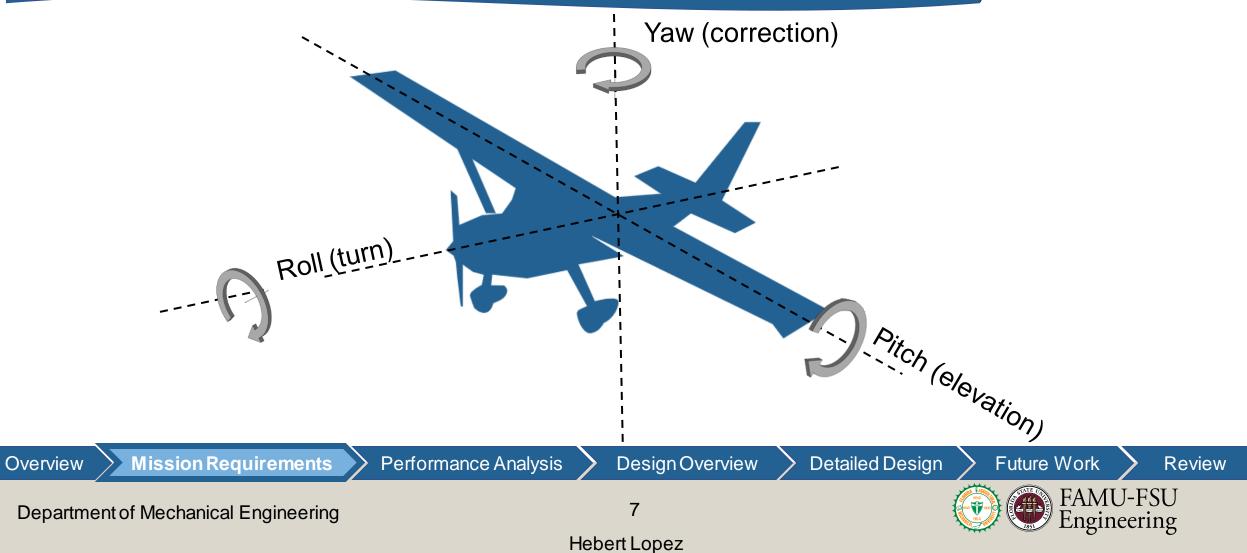
Objective

The objective of this project is to design and manufacture a 3D printed remote controlled (RC) airplane that complies with all rules and regulations for competing in the regular class of the SAE Aero Design East competition.

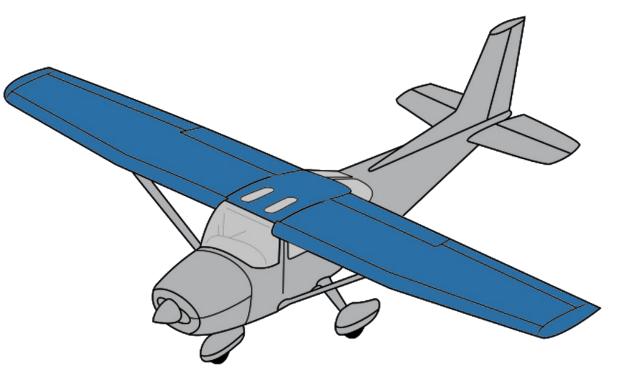


Project Summary

 Compete in the SAE Aero Design East Competition in March 2020
Use additive manufacturing
Improve upon prior teams' designs
Innovate novel solutions



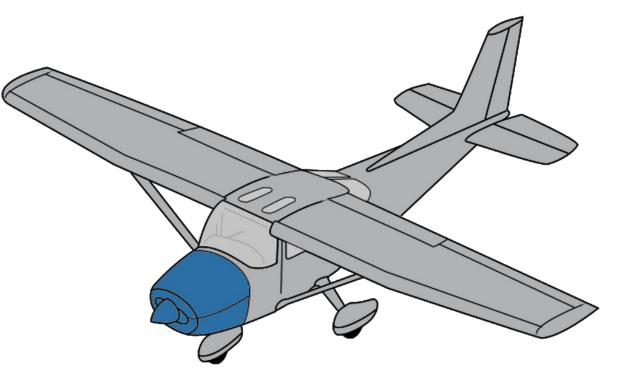
Competition Mission Requirements


Functional Decomposition: Maneuver in Flight

Mission Requirements

Generate Lift:

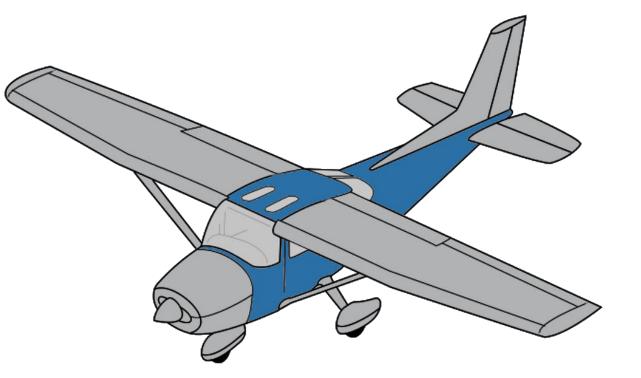
- ✓ Wingspan: 60 120 inches
- \checkmark Wing loading: 10 20 oz/in²
- ✓ Lift coefficient: 1.4 2.5

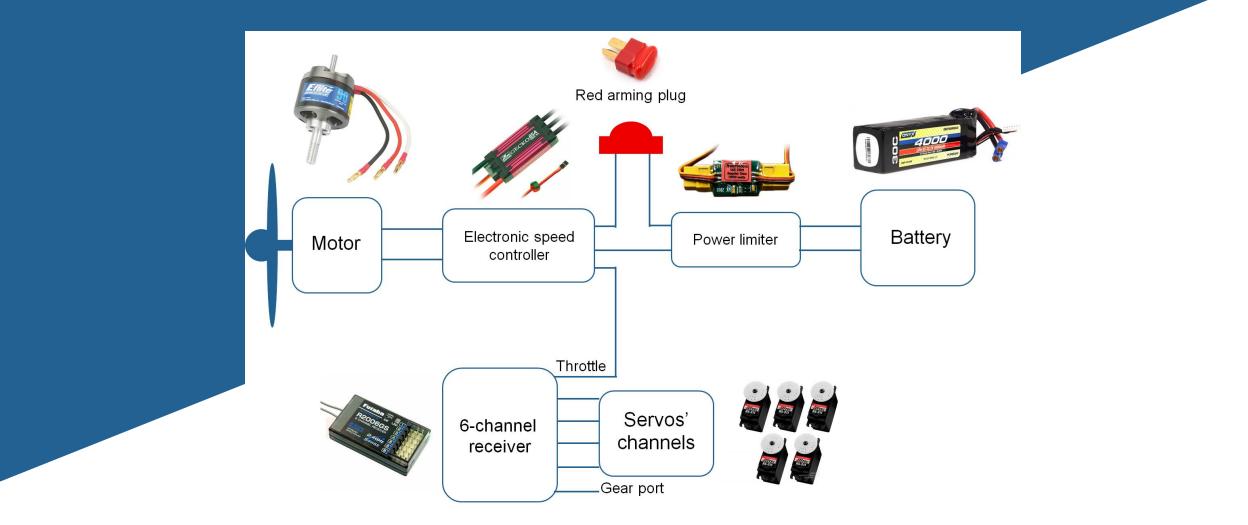


Mission Requirements

Accelerate/Decelerate:

- ✓ Static Thrust: 8 12 lbs
- ✓ Takeoff Speed: 20 30 mph
- ✓ Takeoff Distance: < 100 ft</p>



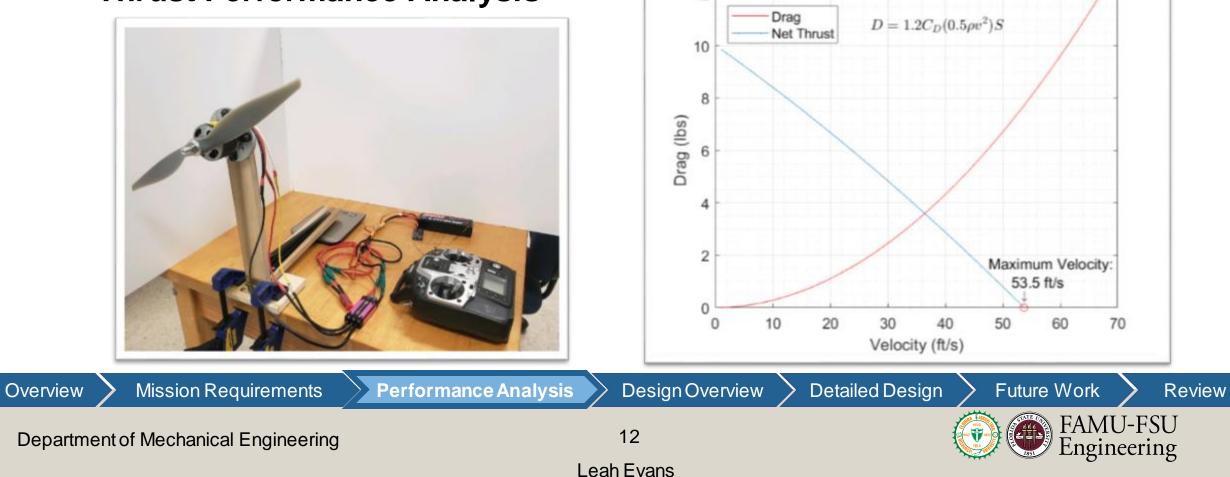

Mission Requirements

Transport Payload:

- ✓ Unload time: < 2 minutes</p>
- ✓ Payload capacity: < 5 lbs</p>
- ✓ Payload area: 10 inch²

Electronics Setup

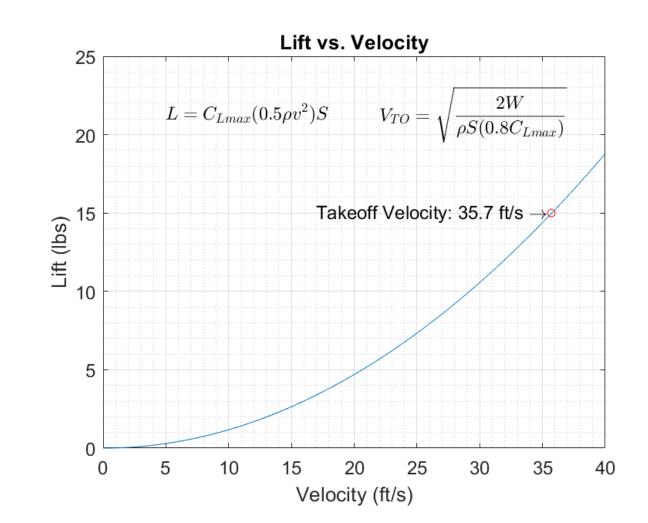
The final wiring diagram for the plane, showing the acquired parts and components to complete the circuit



Testing

Forces on Airplane

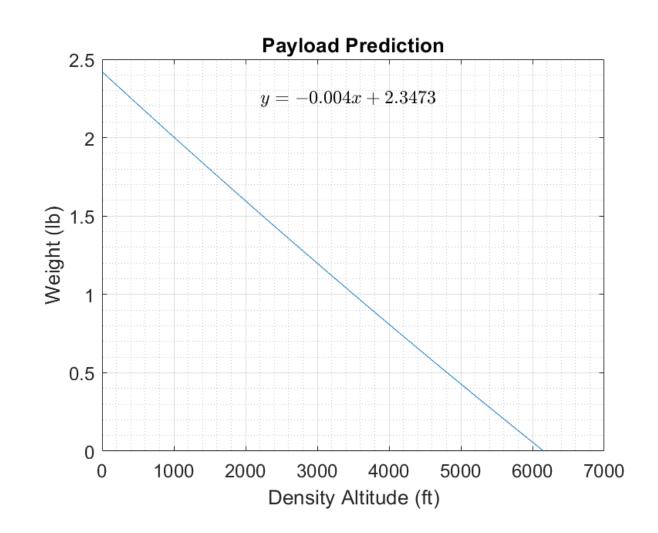
Thrust Performance Analysis



12

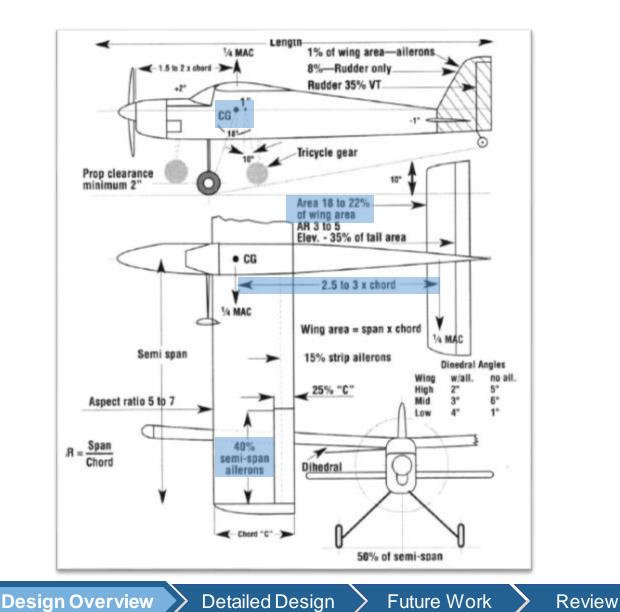
Performance Analysis: Lift

✓ Variables:
✓ Lift (L)
✓ Takeoff Velocity (V_{TO})
✓ Lift coefficient (C_I)
✓ Air density (ρ)
✓ Velocity (v)
✓ Wing area (S)
✓ Weight (W)


Yields 35.7 ft/s (24.3 mph) takeoff velocity for 15 lb plane

Performance Analysis: Payload

- Competition scoring based on ability to carry high payload
- ✓ For Lakeland, Florida (100 ft density altitude):
 - ✓ Max payload: 2.34 lbs



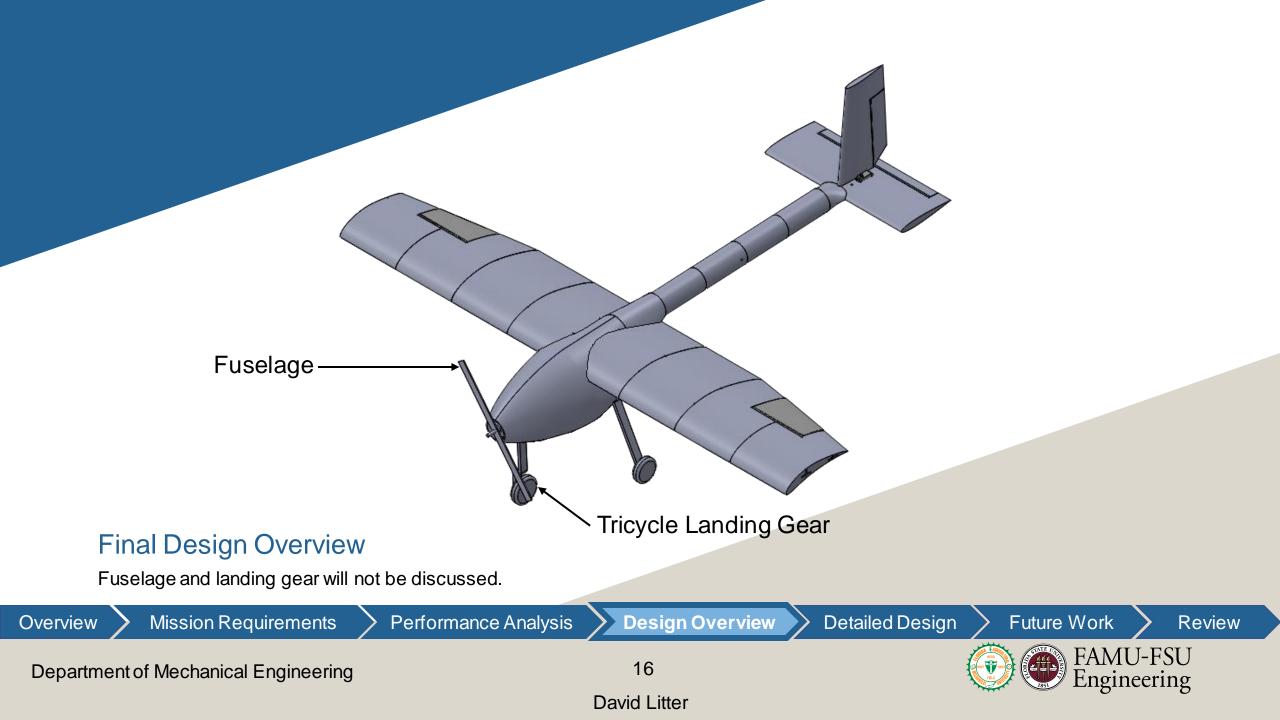
Airplane Proportions

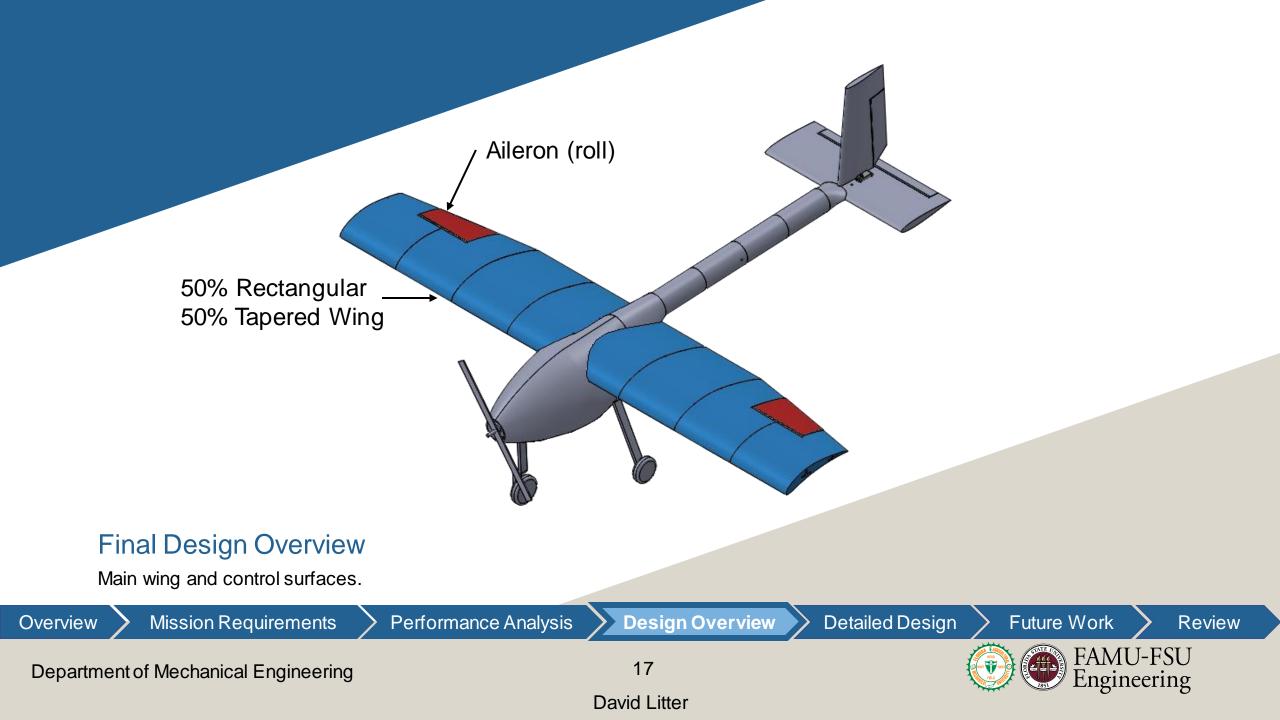
- ✓ Sized airplane using RC standards
- ✓ Wing size determines overall dimensions of airplane
- Performance sensitivities:
 - ✓ Length from wing to tail
 - Control surface area
 - ✓ Size of tail

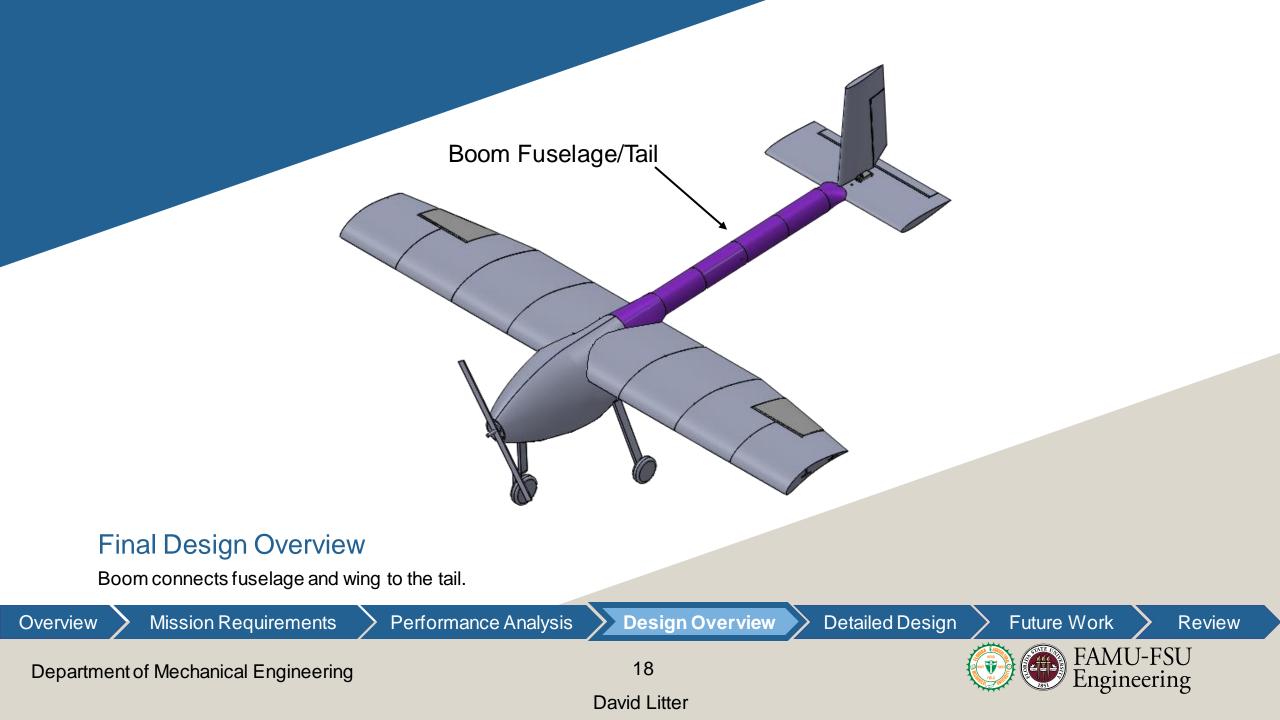
Mission Requirements

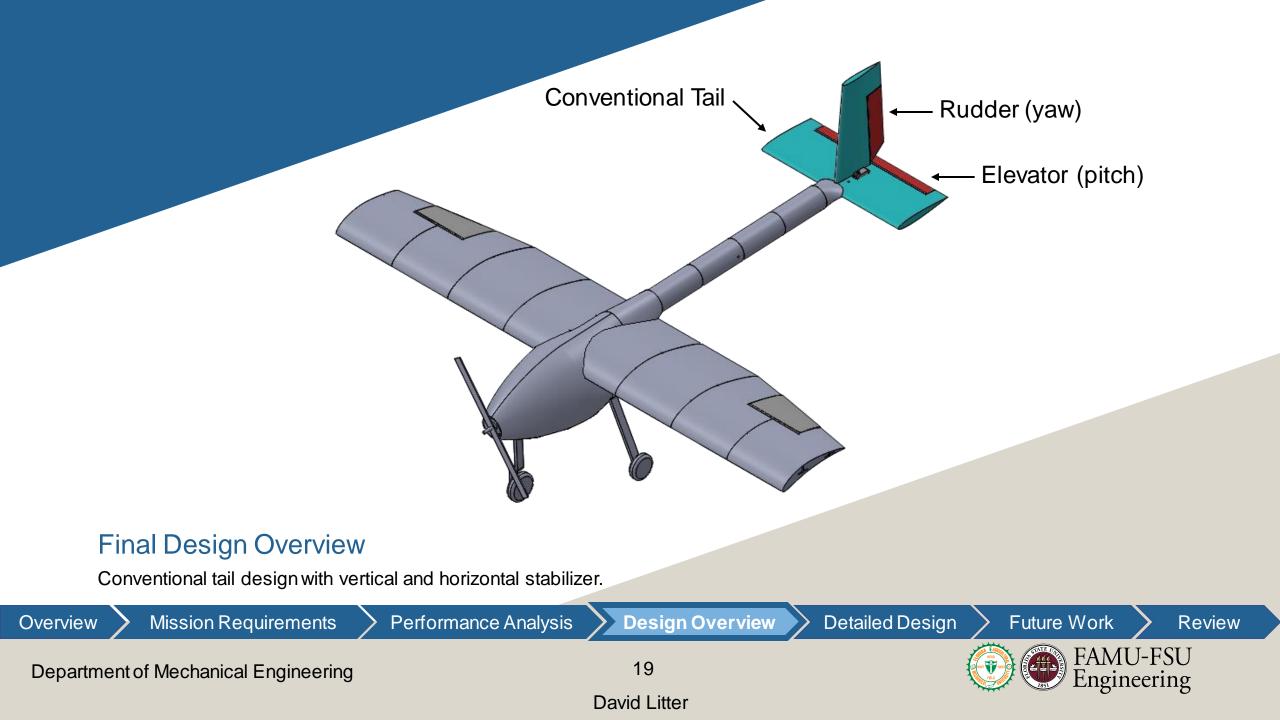
✓ Landing gear location

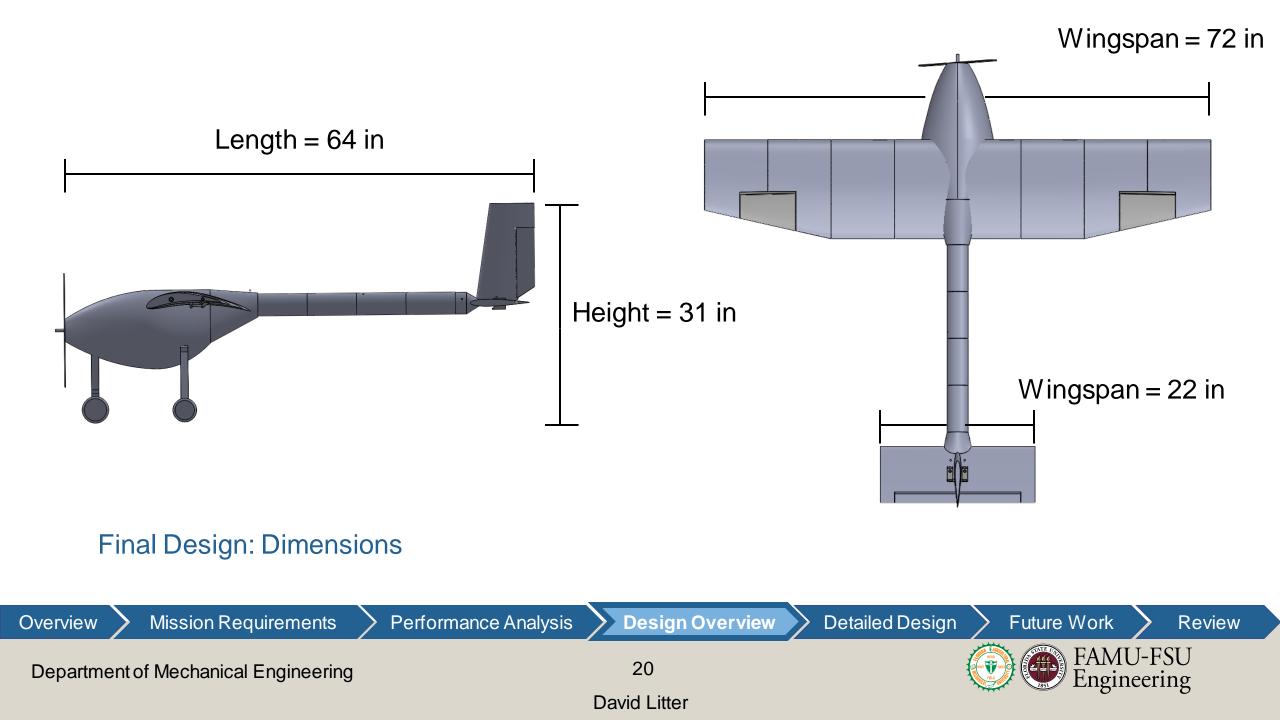
FAMU-FSU

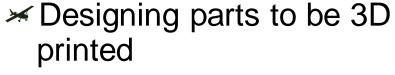

Engineering

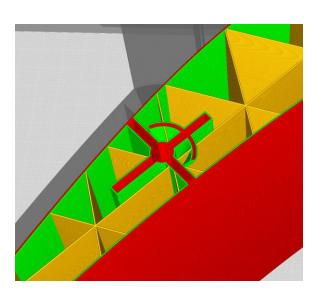

Department of Mechanical Engineering

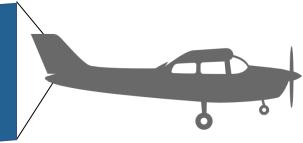

Overview

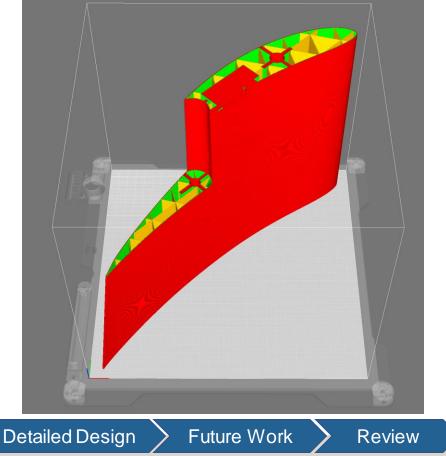

Leah Evans

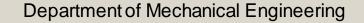

Performance Analysis



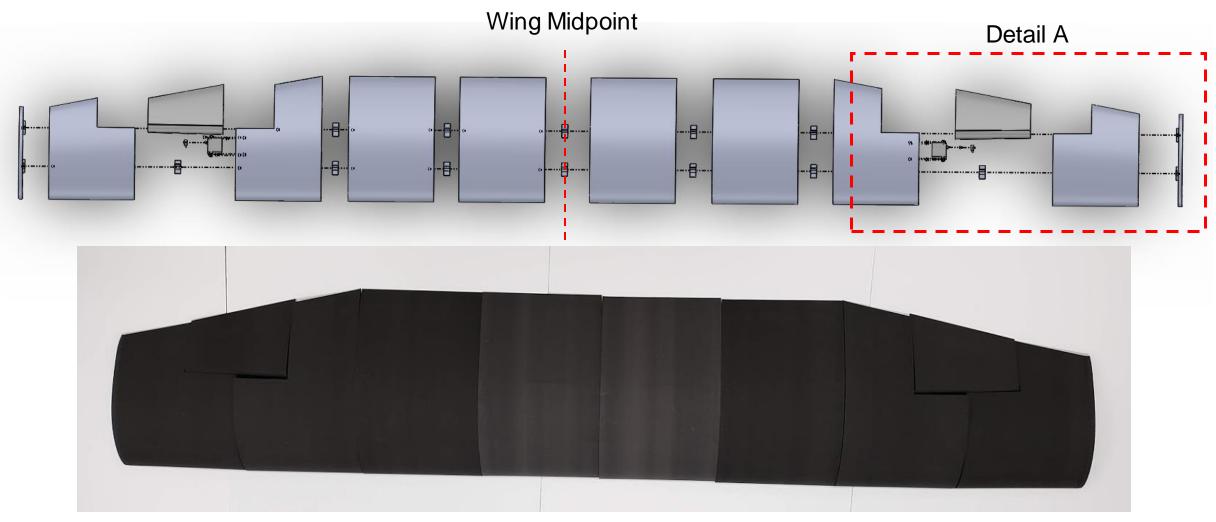



3D Printing


- Ørientation
- Internal structure
- ✓ Custom supports
- ✓ CADing in negative space
- Looking at slice layer-bylayer

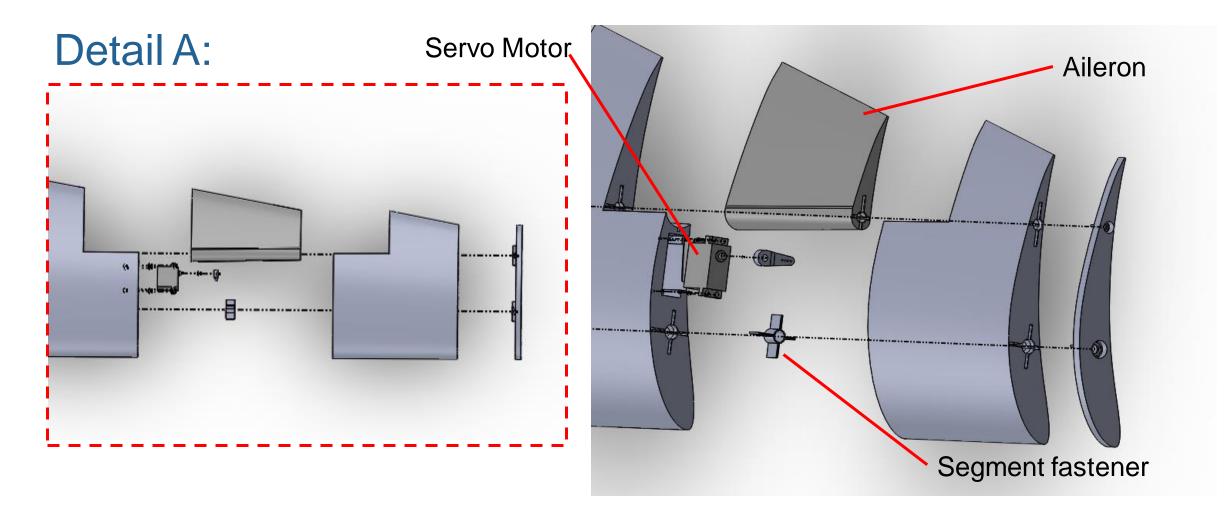

Mission Requirements

FAMU-FSU Engineering



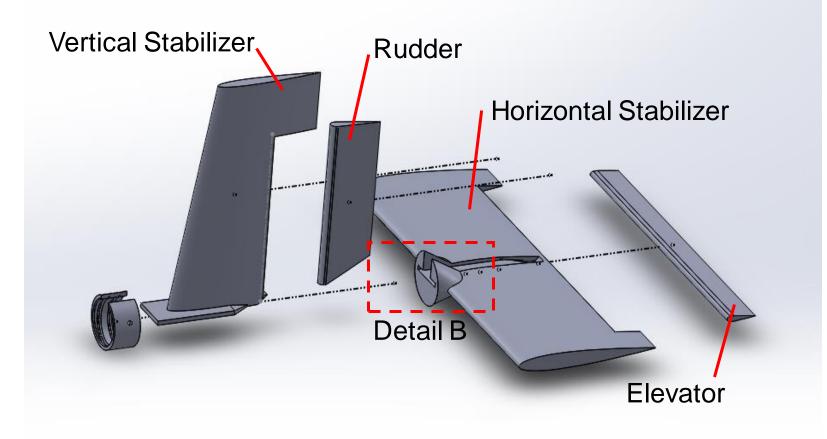
Overview

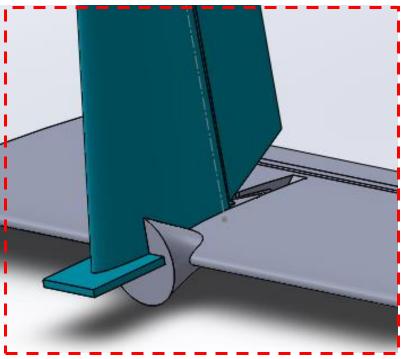
Performance Analysis


Design Overview

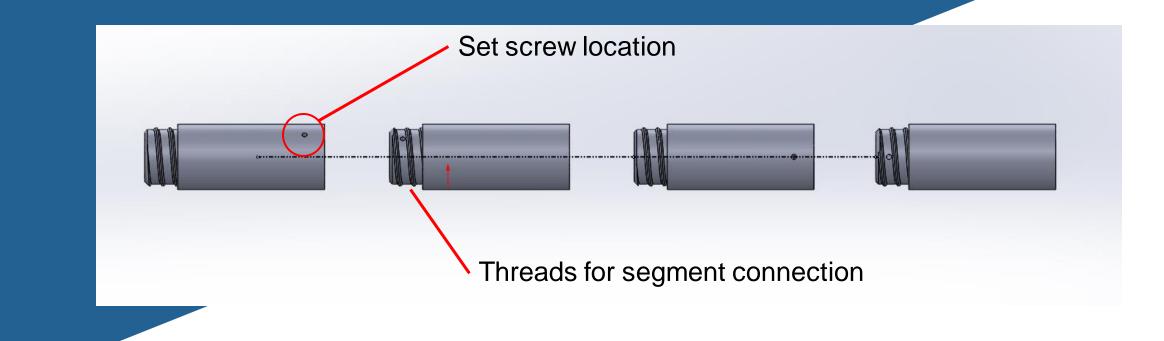
Detailed Design: Wing Assembly

The wing is comprised of eight segments, each nine inches in length, plus the ailerons and end caps.



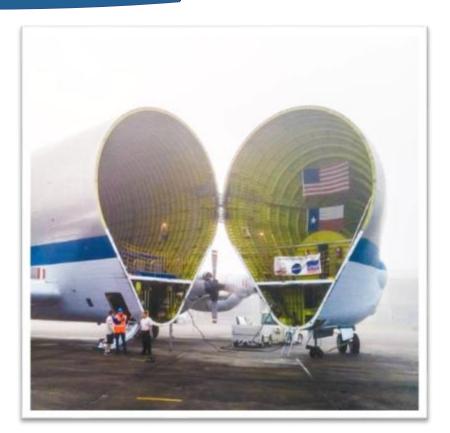

Detailed Design: Servo Motor Integration

Servo motor to control ailerons is located inside of the wing, affixed between two segments.

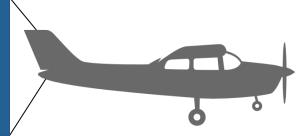

Detail B:

Detailed Design: Horizontal and Vertical Stabilizer

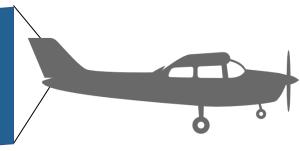
The vertical stabilizer slides and locks into the horizontal stabilizer.


Detailed Design: Boom Tail

The fuselage connects to the tail using a boom, made of four modular segments that fasten using screw threading


Future Work

Design mounting points for electronics ✓ Design guppy cargo door ✓ Create landing gear ✓ Confirm center of gravity \times 3D print remaining parts *★* Initial test flight


Most Important Points

- 1. The goal is to design and manufacture a 3D printed airplane capable of carrying a soccer ball and one pound of steel cargo.
- 2. Calculations are completed that estimate airplane performance, dimensioning is also complete.
- 3. Wing, boom tail, and tail is 3D printed. Fuselage and landing gear is next priority.
- 4. The test flight of airplane will take place February 29th.

References

Anderson, J. D. (2016). Fundamentals of Aerodynamics (6th ed.). New York: McGraw-Hill Education.

Flap (Aeronautics). (2019, September 29). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Flap_(aeronautics)

Flight: Tail Designs. (n.d.). Retrieved from what-when-how: http://what-when-how.com/flight/tail-designs/

Fuselage . (2019, September 14). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Fuselage

Nicolai, L. M., & Carichner, G. (2010). Fundamentals of Aircraft and Airship Design, Volume I, Aircraft Design. Reston: AIAA.

Özgen, S. (2015, Novemeber). The Philosophy of Airplane Design. Retrieved from Middle East Technical University: http://www.ae.metu.edu.tr/~ae451/landing_gear.pdf

RC Airplanes. (2019). Retrieved from Horizon Hobby: https://www.horizonhobby.com/category/airplanes

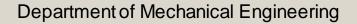
SAE International. (2020, September 05). Series Resources 2020 SAE Aero Design Rules. Retrieved from SAE Aero Design:

https://www.saeaerodesign.com/cdsweb/gen/DocumentResources.aspx

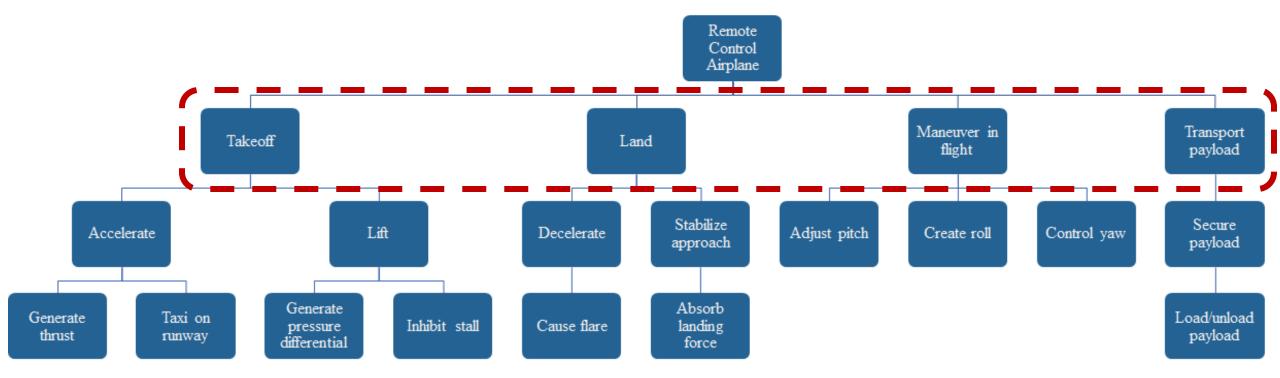
Simons, M. (2015). Model Aircraft Aerodynamics. Englad: Special Interest Model Books Ltd.

Staples, G. (2013, July 16). Propeller Static & Dynamic Thrust Calculation. Retrieved September 27, 2019, from ElectricRCaircraftGuy:

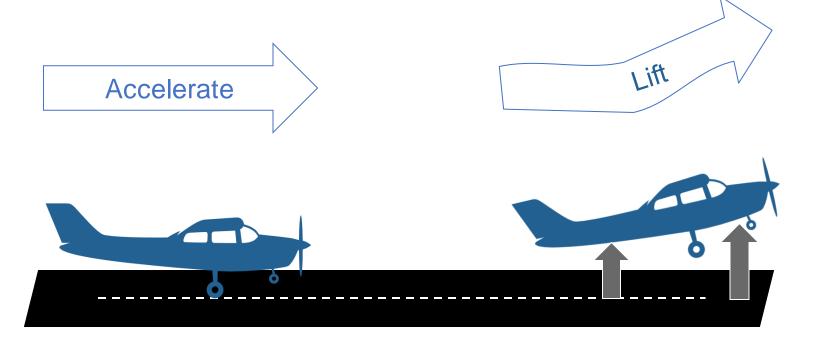
https://www.electricrcaircraftguy.com/2013/09/propeller-static-dynamic-thrust-equation.html *Wing Configuration*. (2019, September 9). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Wing_configuration

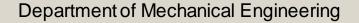


Backup Slides

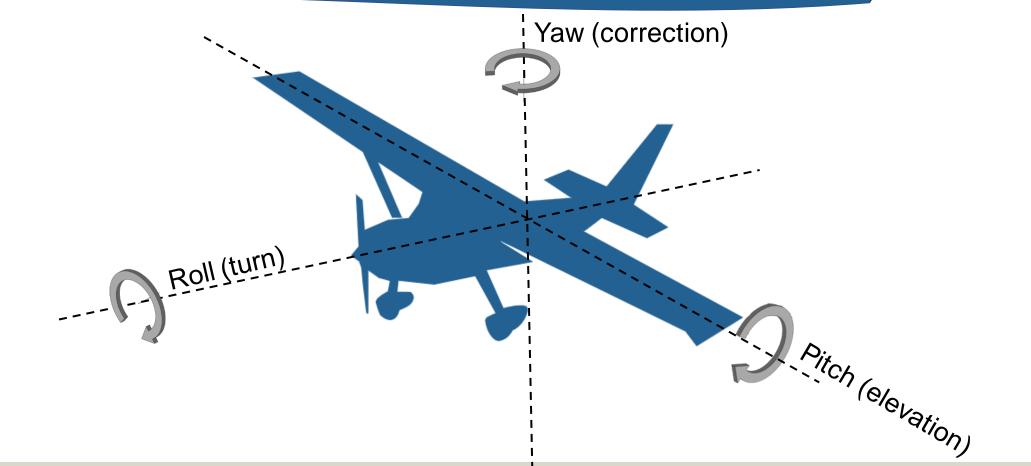


Functional Decomp Backup

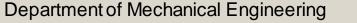

Functional Decomposition



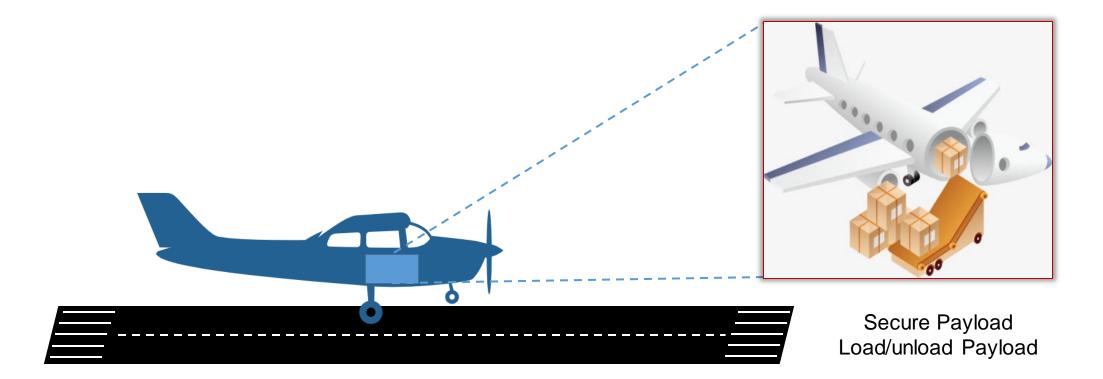
Functional Decomposition: Takeoff


Generate Thrust Taxi on Runway Generate Pressure Differential Inhibit Stall

Functional Decomposition: Maneuver in Flight


Department of Mechanical Engineering

Land D_{ecelerate} Absorb **Cause Flare** landing force Stabilize Approach


Functional Decomposition:

Functional Decomposition: Transport Payload

Concept Selection Backup

Relationships			
Strong	•		
Moderate	0		
Weak	∇		

Direction of Improveme	nt
Maximize	
Target	٥
Minimize	•

				Column#	1	2	3	4	5	6	7	8	9	10
				Direction of Improvement	•			◇		\$	•	•	•	•
Row #	Weight Chart	Relative Weight	Customer I mportance	Customer Requirements (Explicit and Implicit)	Weight(Lb)	Thrust (lbf)	Lift (Ibf)	Drag (Ibf)	Acceleration (fds^2)	Weight Distribution (lbf(x))	Wingspan (in)	Time to Unload Cargo (sec)	Price (\$)	Manufacturing Time (sec)
1		16%	10	Fly	•	•	•	•	•	▽	•	▽	V	0
2		10%	6	Carry Payload	٠	•	•	•	•	•	0	0	▽	0
3		8%	5	Takeoff Distance	٠	•	•	•	•	▽	•	0	0	•
4		8%	5	Landing	•	•	0	•	•	▽	⊽	▽	0	•
5		8%	5	Cost	▽	•	▽	▽	0	0	0	▽	•	0
6		15%	9	3-D Printed	•	▽	▽	▽	•	0	•	•	•	•
7		10%	6	Flight Stability	0	▽	•	•	0	•	•	•	V	0
8		10%	6	Payload Accesibility	▽	▽	▽	•	0	•	▽	•	V	•
9		16%	10	Safety	•	•	▽	▽	0	0	0	•	0	▽
				Technical Importance Rating	700	629	464.5	590.3	638.7	409.7	554.8	535.5	345.2	509.7
				Relative Weight	13%	12%	9%	11%	12%	8%	10%	10%	6%	9%
				Weight Chart						-			-	

House of Quality

Initial Pugh Selection Chart

		Concepts						
Selection Criteria	Concept 7	1	2	3	4	5	6	8
Weight		+	-	-	S	S	+	+
Drag		+	S	-	S	-	S	+
Wingspan		+	+	+	S	S	+	+
Time to Unload		+	-	S	S	-	+	-
Manufacturing Time	DATUM	-	-	+	S	S	+	-
Cost		-	+	S	+	+	S	+
# of pluses]	4	2	2	1	1	4	4
# of minuses		2	3	2	0	2	0	2

Pugh Chart 1

Eliminated Concept 2 & 5. Concept 6 becomes new datum.

		Concepts			
Selection Criteria	Concept 6	1	3	4	8
Weight		+	-	S	+
Drag		+	-	-	S
Wingspan		S	S	-	S
Time to Unload		S	-	+	-
Manufacturing Time	DATUM	-	S	+	-
Cost		-	S	S	+
# of pluses		2	0	2	2
# of minuses		2	3	2	2

Pugh Chart 2

Eliminated Concept 3 & 8. Concept 1, 4, and 6 transfer to AHP.

Criteria 1 – Drag

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	1.460	0.480	3.044
Concept 4	0.346	0.115	3.010
Concept 6	1.230	0.405	3.033
Avg Con: 3.029	Con Index: 0.015	Con Ratio: 0.028	Consistent?: Yes

Criteria 2 – Weight

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	1.230	0.405	3.033
Concept 4	0.346	0.115	3.010
Concept 6	1.460	0.480	3.044
Avg Con: 3.029	Con Index: 0.015	Con Ratio: 0.028	Consistent?: Yes

Analytic Hierarchy Process

Overview of drag and weight criteria

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	0.790	0.260	3.033
Concept 4	0.320	0.106	3.011
Concept 6	1.946	0.633	3.072
Avg Con: 3.039	Con Index: 0.019	Con Ratio: 0.037	Consistent?: Yes

Criteria 4 – Time to Unload

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	0.790	0.260	3.033
Concept 4	0.320	0.106	3.011
Concept 6	1.946	0.633	3.072
Avg Con: 3.039	Con Index: 0.019	Con Ratio: 0.037	Consistent?: Yes

Analytic Hierarchy Process

Overview of wingspan and time to unload criteria

Criteria 5 – Manufacturing Time

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	0.273	0.091	3.000
Concept 4	1.364	0.455	3.000
Concept 6	1.364	0.455	3.000
Avg Con: 3.000	Con Index: 0.000	Con Ratio: 0.000	Consistent?: Yes

Criteria 6 – Cost

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	1.853	0.574	3.230
Concept 4	0.427	0.140	3.049
Concept 6	0.897	0.286	3.133
Avg Con: 3.137	Con Index: 0.069	Con Ratio: 0.132	Consistent?: No

Analytic Hierarchy Process

Overview of manufacturing time and cost criteria

AHP Criteria Weights and Consistency Check

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Drag	2.840	0.369	7.697
Wingspan	1.387	0.212	6.554
Time to Unload	0.607	0.097	6.268
Weight	1.044	0.156	6.711
Manufacturing Time	0.962	0.143	6.739
Cost	0.159	0.024	6.591
Avg Con: 6.760	Con Index: 0.152	Con Ratio: 0.122	Consistent?: No

Analytic Hierarchy Process

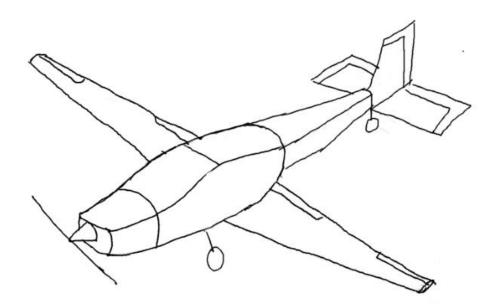
Overview of criteria weights

	[Final Rati	ng Matrix] ^T			
Selection Criteria	Concept 1	Concept 4	Concept 6		
Drag	0.480	0.115	0.405		
Weight	0.405	0.115	0.480		
Wingspan	0.260	0.106	0.633	X	
Time to Unload	0.260	0.106	0.633		Ti
Manufacturing Time	0.091	0.455	0.455		M
Cost	0.574	0.140	0.286		

Criteria We	eights {W}
	Weight
Drag	0.369
Weight	0.212
Wingspan	0.097
Time to Unload	0.156
Manufacturing Time	0.143
Cost	0.024

		Alternative Value
	Concept 1	0.355
=	Concept 4	0.162
	Concept 6	0.483

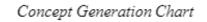
Analytic Hierarchy Process


Overview of final selection matrix

Selected Concept: Concept Six

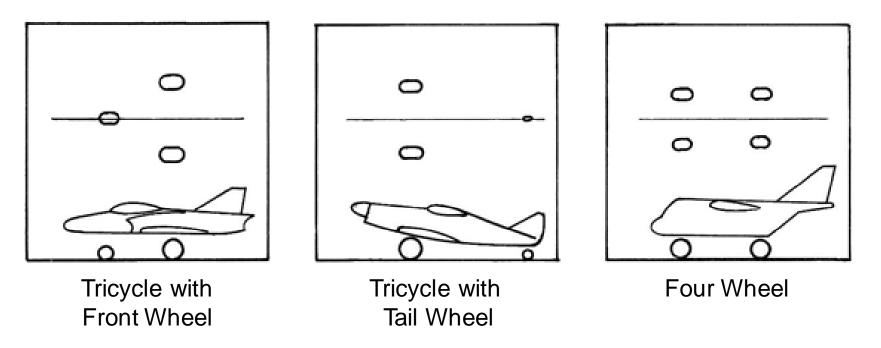
- ✓ Tapered Wings
- ✓ Low wing location
- Tricycle with tail wheel
- 🛩 LW PLA
- ✓ Conventional tail

Concept Generation Backup



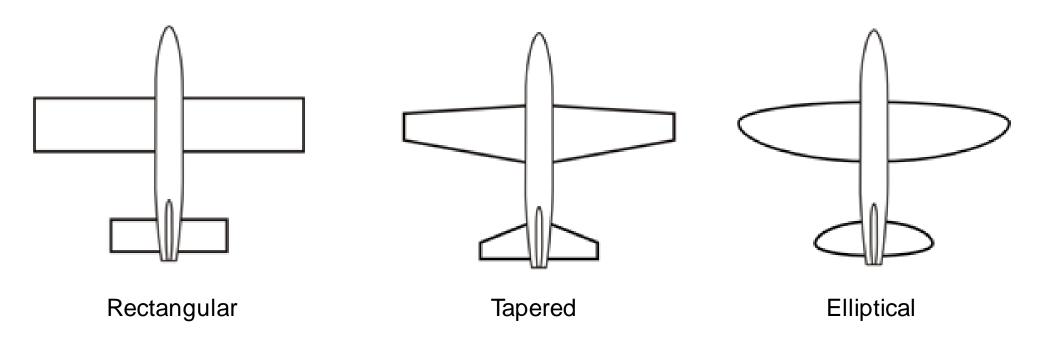
Modular Connections	3D Materials	Propeller Size	1070 (20 - 10 C C)	Number of Blades	A AN ARCON 1	Landing Gear Mechanism	Landing Gear Suspension	Wings	Wing Location	Wing Orientation	Aileron/Flaps	Motor	1.00	Electronics add ons	Battery	Tail
Compression	PLA	Large Prop	Large Pitch	2 Blade	Tricycle with Front Wheel	Fixed	Fixed	Elliptical	Low Wing	Uniform Leading Edge	Plain	Low ky Rating	Flying boat	Speed Densor	High Battery Capacity	Conventional
Formfit	ABS	Small Prop	Small Pitch	3 Blade	Tricycle with Tail-Wheel	Retractable	3D Printed Flexible	Tapered	Mid Wing	Swept	Split	High ky Rating	Double booms	Gyroscope	Low Batter Capacity	T-Tail
Glue	LW-PLA			4 Blade	Four Wheels		Metal Fleible	Rectanguiar	High Wing		Slotted		Symmetric from side view	Camera	Higher Ampacity	Cruciform
Fasteners	TPU				Ski-Plane		Shocks	Inverted			Fowler		SubSonics	Illumination	Appropriate C rating	Dual
Japanese glue free joints	PP							Winglets			Double-Slotted Fowler		Super Sonic	Extra Battery		Triple
T-joint glued form fit								Triangular			Junkers		High capacity sub sonic	Special Speed Controller		v
Soldering											Gouge		High manurability super sonic			Inverted V
Solocimity								-			Fairey- Youngman		Juper Jorne			Inverterd Y
8											Zap					Twin
S											Krueger					Boom
Q	2	2	1		1°				-		Gurney			1 I I I I I I I I I I I I I I I I I I I		High Boom
0											Leading Edge Droop					Multiple-plane tail
											Handley-page					

Excel table which combined morphological chart and crap shoot method to generate 100 concepts

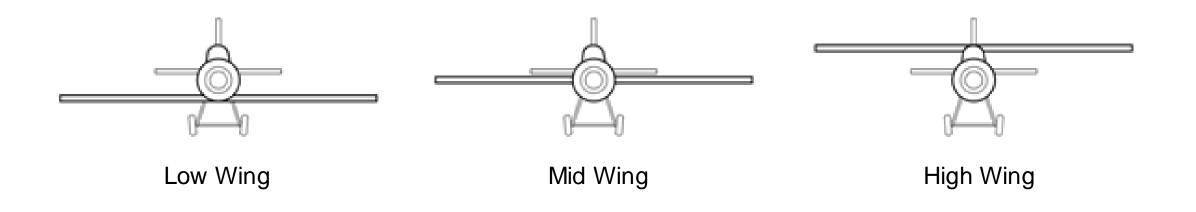


3D Material	Landing Gear	Wings	Wing Location	Aileron/Flaps	Fuselage	Tail
PLA	Tricycle with Front Wheel	Elliptical	Low Wing	Plain	Flying boat	Conventional
ABS	Tricycle with Tail- Wheel	Tapered	Mid Wing	Split	Double booms	T-Tail
LW-PLA	Four Wheels	Rectangular	High Wing	Slotted	Subsonic	Cruciform
					High Capacity Subsonic	Triple
						Twin
						Boom
						High Boom

Landing Gear Configuration

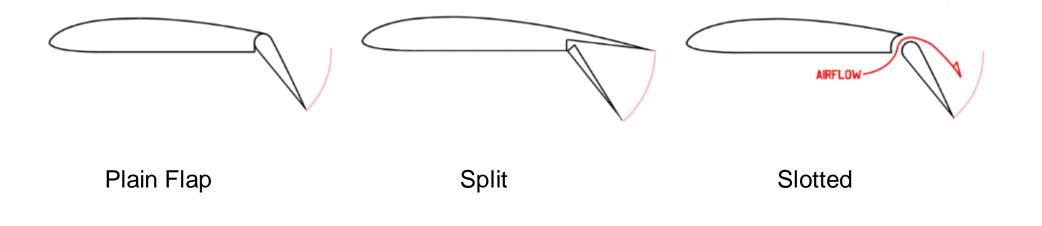


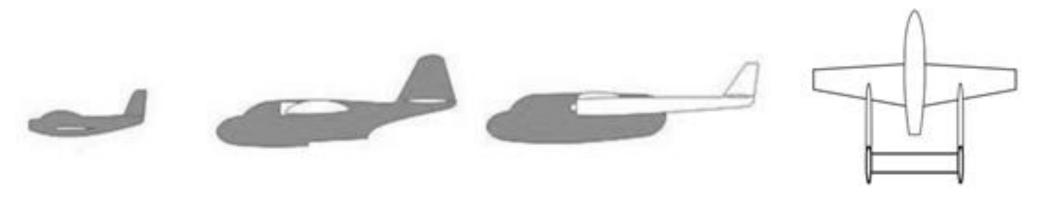
Department of Mechanical Engineering


Wing Planform

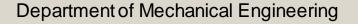


Wing Location




Aileron and flaps

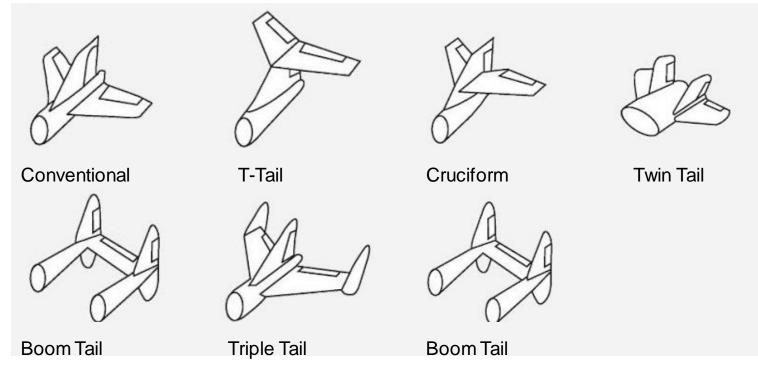
Fuselage



Subsonic

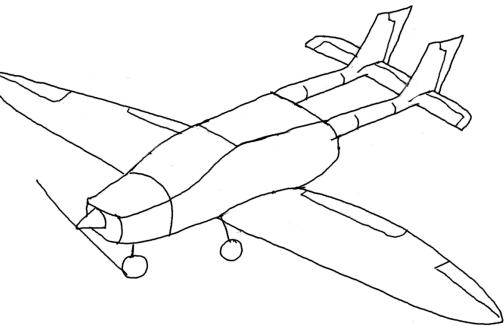
High Capacity Subsonic

Flying Boat


Double Boom

Tail Configuration

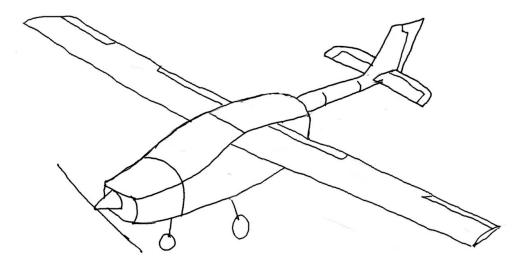
Department of Mechanical Engineering



Detailed Concept Backup

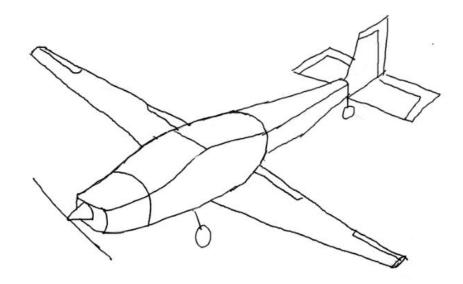
Concept One

- Elliptical shaped wings most efficient
- ✓ Reduce wing load
- Split ailerons give more redundancy
- Boom tail reduces fuselage weight



Concept Four

- ✓ Light weight PLA
- Slotted flap increases lift and decreases drag
- Rectangular wing is the least efficient design



Concept Six

- Positive angle of attackIncrease the lift
- ✓ Conventional Tail
- ✓ Light weight PLA

Detailed Math Backup

Takeoff Calculation

Takeoff Ground Distance:
$$S_G = \int_0^{V_{\text{TO}}} \frac{V dV}{a} = \frac{1}{2} \int_0^{V_{\text{TO}}} \frac{dV^2}{a}$$

Takeoff Velocity: $V_{\text{TO}} = 1.2 V_{\text{stall}} = 1.2 \sqrt{\frac{W_{\text{TO}}}{S_{\text{ref}}}} \frac{2}{\rho C_{L_{\text{max}}}}$

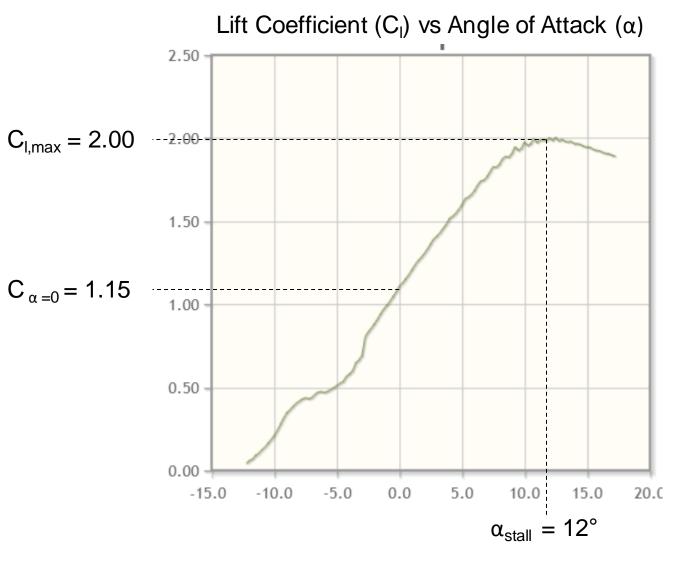
Command Window

For an airplane with 15.000 lb weight, 72.000 in wingspan, and 14.000 in chord length yields 7.000 ft² wing area, 5.143 aspect ratio, and 34.286 oz/in² wing loading

The required velocity for take off is 34.441793 ft/s or 23.483034 mph

The required ground distance for take off considering thrust is 32.506 ft The above doesnt include drag, and thrust is a rough estimate at 8.500000 in the calculation

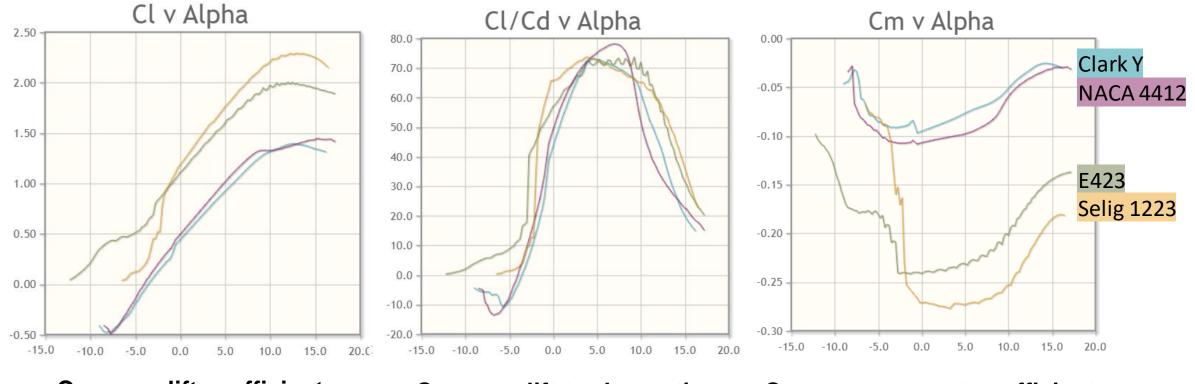
The required ground distance traveled for take off considering lift and drag is 49.665579 ft fx >>



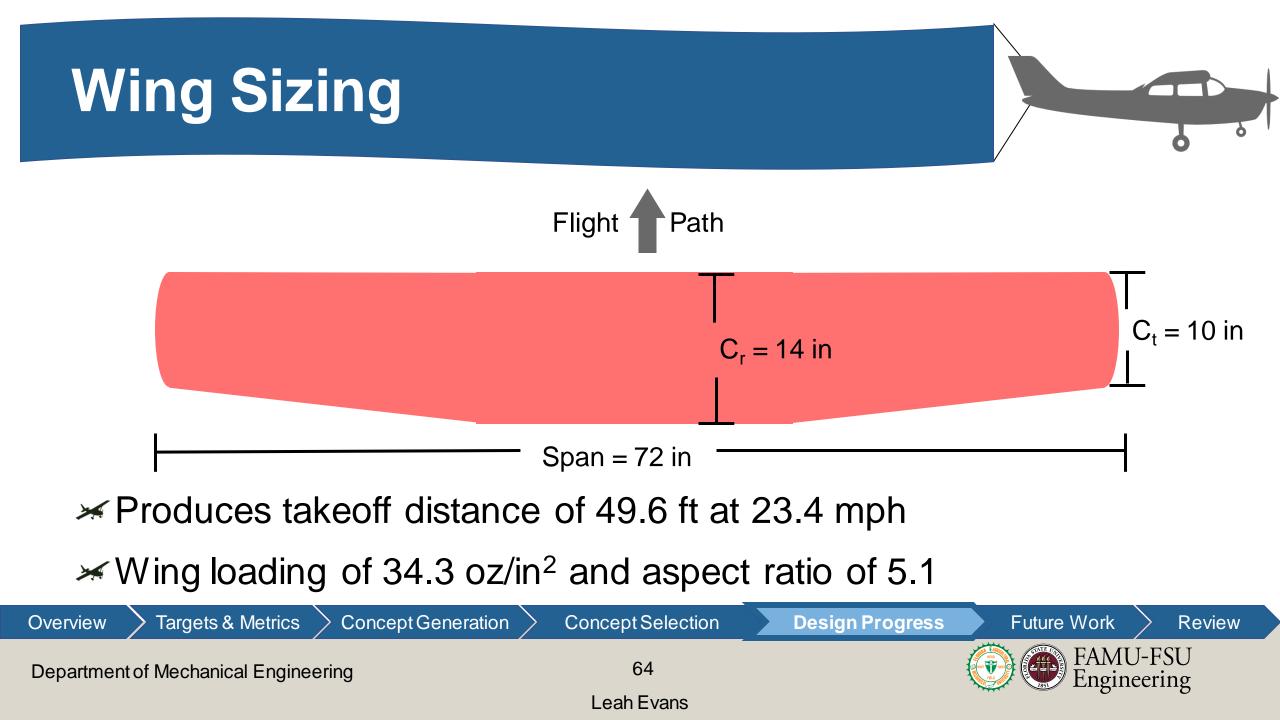
 \bigcirc

Airfoil Selection

- ✓ Selected the Eppler E423
- Satisfies targets for lift coefficient and stall angle of attack
- Designed as a heavy lift UAV airfoil



Airfoil Selection


Compare lift coefficient

Compare lift-to-drag ratio

Compare moment coefficient

Bill of Materials Backup

ltem No.	Items Purchased with Grant Money	\$	/Unit	Qty		Price	Pri	ce w/ Tax
1	SAE Competition Registration	\$1	,100.00	1	\$1	l,100.00	\$	1,100.00
2	Onxy 22.2V 63 4000mAh 30C LiPo Battery, EC5 connector	\$	76.39	2	\$	152.78	\$	164.24
3	Futaba R2006GS 6-Channel S-FHSS Receiver	\$	39.99	1	\$	39.99	\$	42.99
4	Onyx LiPo Charge Protection Bag		8.99	1	\$	8.99	\$	9.66
	Item 2, 3, 4 with \$30 off discount						\$	(30.00)
5	E-flite Prop Adapters: Power 90	\$	17.09	1	\$	17.09	\$	18.20
6	E-flite X-Mount/Hardware: Power 90/110/160	\$	14.24	1	\$	14.24	\$	15.17
7	APC 18x8 Thin Electric Propeller	\$	11.13	1	\$	11.13	\$	11.85
	Item 5, 6, 7, shipping and handling						\$	15.40
8	Al 6061 Spar 0.37"x0.035"x0.305"	\$	9.94	2	\$	19.88	\$	39.76
9	Al 6061 Spar 0.25"x0.035"x0.18"	\$	9.73	2	\$	19.46	\$	38.92
	Item 8 and 9 shipping and handling						\$	21.96
10	Colorfabb Light Weight PLA 0.75kg roll	\$	30.91	6	\$	185.46	\$	185.46
	Item 10 Shipping						\$	43.20
11	Colorfabb Light Weight PLA 0.75kg roll		\$39.60	5		\$198.00		\$198.00
					Tot	tal	Ś	1,874.81

Purchasing Log

	Items	Category	\$ / Unit	Otv	Retail Price	Price	Wt. / Unit [oz]	Total Wt. [oz]	Dimensions / Specs	Source	Purchased/Printed	Need By Date	Received	Completition Percentage	e Completed
	FlightLine RC 5055-390kV Brushless Motor	Propulsion	Legacy	1	\$59.99	\$0.00	14.460	14.460	3.14" x 1.97 "	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	E-Flite Power 90 Brushless Outrunner Motor 325Kv	Propulsion	Legacy	1	\$129.99	\$0.00	15.800	15.800	diameter: 2.21" length: 2"	Link	No	11/27/2019	10/25/2019	100.00%	YES
	ADMIRAL 6s, 4000 mAh, 40 C, 22.2 V Battery	Power	Legacy	1	\$79.99	\$0.00	21.090	21.090	5.51" x 1.77" x 1.65"	Link	No	11/27/2019	9/6/2019	100.00%	YES
	Spare Battery	Power	\$79.99	1	\$79.99	\$79.99	21.090	21.090	5.51" x 1.77" x 1.65"	Link	No	11/27/2019		92.31%	NO
	Prop Adapters: Power 90	Fastener	\$8.55	2	\$17.09	\$17.09			6mm propeller adapter for E-flite 90 motor	Link	10/31/2019	11/27/2019		76.92%	NO
	X-Mount/Hardware: Power 90, Motor mounting hardware	Fastener	\$14.24	1	\$14.24	\$14.24	0.120	0.120	3.90" x 2.40" x 0.49"	Link	10/31/2019	11/27/2019		92.31%	NO
ino	Futaba 6J 6-Channel S-FHSS System	Control	Legacy	1	\$179.99	\$0.00		-	4.8" x 10.2 x 16"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
ecti	Futaba R2106GF 6-Channel S-FHSS Micro Receiver	Control	\$29.99	1	\$29.99	\$29.99	0.140	0.140	1.5" x 0.85" x 0.40"	Link	No	11/27/2019		92.31%	NO
	ZTW GECKO 85A ESC WITH 8A SBEC WITH XT-60 CONNECTOR	Control	Legacy	1	\$49.36	\$0.00	2.650	2.650	2.59" x 1.29" x 0.62"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	Hitec HS-311 Plastic Gear Standard Servo	Control	\$8.99	7	\$62.93	\$0.00	1.510	10.570	1.57" x 0.78" x 1.44"	Link	No	11/27/2019		92.31%	NO
	Red Arming Plug	Safety	\$6.47	1	\$6.47	\$6.47	0.130	0.130	0.28" x 0.50" x 0.5"	Link	No	11/27/2019		92.31%	NO
	SAE 2019 Power Limiter V2 regular class 1000W	Safety	Legacy	1	\$75.00	\$0.00	0.720	0.720	0.5" x 0.5" x 2.00"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	Cell Meter Battery Capacity Checker	Safety	\$8.99	1	\$8.99	\$8.99	1.760	1.760	3.26" x 0.98"	Link	10/28/209	11/27/2019	10/30/2019	100.00%	YES
														0.00%	
	Ailerons	Wing		2		\$0.00		0.000		<u>N.A</u>	No	11/27/2019		69.23%	NO
	Flap	Wing		2		\$0.00		0.000		<u>N.A</u>	No	11/27/2019		61.54%	NO
	Hinges	Wing		4		\$0.00		0.000		N.A	No	11/27/2019		61.54%	NO
	Support Spar	Wing		2		\$23.58		0.000		Link	No	11/27/2019		61.54%	NO
														0.00%	
	Cargo Bay	Fuselage		1		\$0.00		0.000	The \$/unit and unit weight will be determined once the	<u>N.A</u>	No	1/6/2020		61.54%	NO
5.0	Nose Cone	Fuselage		1		\$0.00		0.000	airplane CAD is created. It is assumed all these parts will be	<u>N.A</u>	No	1/6/2020		61.54%	NO
3D Printing	Electronics Bay	Fuselage		1		\$0.00		0.000	printed with the Light Weight Polylactic Acid.	<u>N.A</u>	No	1/6/2020		61.54%	NO
Prin	Hinges	Fuselage		4		\$0.00		0.000	printed with the Eight Weight Folylaette Held.	<u>N.A</u>	No	1/6/2020		61.54%	NO
- Q														0.00%	NO
	Elevator	Tail		2		\$0.00		0.000		<u>N.A</u>	No	1/6/2020		61.54%	NO
	Rudder	Tail		1		\$0.00		0.000		<u>N.A</u>	No	1/6/2020		61.54%	NO
	Vertical Stabilizer	Tail		1		\$0.00		0.000		<u>N.A</u>	No	1/6/2020		61.54%	NO
	Horizontal Stabilizer	Tail		1		\$0.00		0.000		<u>N.A</u>	No	1/6/2020		61.54%	NO
	Hinges	Tail		4		\$0.00		0.000		<u>N.A</u>	No	1/6/2020		61.54%	NO
		3371 1	T	2	£0.00	\$0.00	0.244	0.400	OD 21 ID 1 0.1701	1.1.1		11/07/2010	0/6/2010	100.00%	VEO
	Dubro Super Lite Wheels 3" Sullivan SkyLite Wheel w/Aluminum Hub 4-1/2"	Wheel	Legacy	2	\$8.99 \$38.66	\$0.00	0.244	0.488	OD = 3" ID axle = 0.178" OD = 4.5" ID axle = 1.6"	Link Link	Legacy	11/27/2019 11/27/2019	9/6/2019 9/6/2019	100.00%	YES YES
ar	Sullivan SkyLite Wheel W/Aluminum Hub 4-1/2 Dubro Axle Shaft	Fastener	Legacy		\$38.66	\$0.00	1.200	2.400		Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
Gear			Legacy	2	\$6.79	\$0.00	0.176		OD = 0.1875" Length axle= 2" For 1" dubro tail wheel	Link	Legacy No	11/27/2019	9/6/2019	92.31%	NO
00 E	Dubro Tail Wheel Assembly Dubro Tail Wheel 1"	Fastener Wheel	\$3.99 \$2.48	1	\$3.99	\$3.99	0.176	0.176	OD = 1" for tail wheel assembly	Link	No	11/27/2019		92.31%	NO
pug	Dubro Tali wheel I	wheel	\$2.48	1	\$2.48	\$2.48	0.680	0.680	OD = 1 for tail wheel assembly	LIIIK	INO	11/2//2019		92.31%	NO
Ë,	[Shocks, if needed]											1/6/2020		15.38%	
	[Shocks accessories, if needed]											1/6/2020		15.38%	
	Size Five Soccer Ball	Cargo	\$15.00	1	\$15.00	\$15.00	15.000	15.000	100% Butylene Size 5 ball (official size)	Link	No	11/27/2019		92.31%	NO
	Velcro Bands	Fastener	\$0.53	4	\$2.10	\$2.10	0.200	0.800	General Purpose Peel & Stick	Link	No	11/27/2019		92.31%	NO
	Steel Plates	Cargo	Legacy	6	\$8.35	\$0.00	16.000	96.000	A36 Steel Plate	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	Metal Screw	Fastener	\$0.20	6	\$1.18	\$1.18	0.071	0.423	#8 x 1-1/2 in. Phillips Flat Head Plated Sheet Metal Screw	Link	No	11/27/2019	9/0/2019	92.31%	NO
	Flite Test Water-Resistant Foam Board By Adams	Prototype	\$2.99	10	\$2.99	\$29.90	4.021	40.212	L = 20" $W = 30$ " thick = 3/16"	Link	No	11/27/2019		92.31%	NO
	Gorilla Glue Hot Glue Sticks	Prototype	\$0.13	30	\$3.97	\$3.97	0.149	4.480	8" tall multipurpose temp range	Link	No	11/26/2019		92.31%	NO
	Polylactic Acid	Filament	\$0.33	3	\$20.99	\$0.00	105.900	317.700	35.3 Oz	Link	Sponsered	11/20/2019	9/26/2019	100.00%	YES
	Acrylonitrile Butadiene Styrene	Filament	\$0.20	5	\$18.99	\$0.00	176.500	882.500	35.3 Oz	Link	Sponsered	11/1/2019	9/26/2019	100.00%	YES
	Flexible	Filament	\$0.20	2	\$26.99	\$0.00	70.600	141.200	35.3 Oz	Link	Sponsered	11/1/2019	9/26/2019	100.00%	YES
	Light Weight Polylactic Acid	Filament	\$1.09	2	\$20.99	\$54.00	52.800	105.600	26.4 Oz	Link	9/6/2019	11/1/2019	9/20/2019	100.00%	YES
50 E	Loctite Gel Control 4g Super Glue	Fastener	\$10.64	2	\$2.98	\$2.98	0.280	0.560	0.14 Oz	Link	No	11/1/2019	,,20,2017	92.31%	NO
esti	APC Electric Propeller 16x8E	Propulsion	\$8.42	1	\$8.42	\$8.42	1.830	1.830	Diameter = $16"$ Pitch = $8"$	Link	10/30/2019	11/1/2019	11/1/2019	100.00%	YES
- F	APC Electric Propeller 18x8E	Propulsion	\$11.13	1	\$11.13	\$11.13	3.030	3.030	Diameter = 10 Fitch = 8"	Link	10/31/2019	11/1/2019	11, 1, 2017	92.31%	NO
	APC Electric Propeller 18x10E	Propulsion	Legacy	1	\$11.13	\$0.00	2.570	2.570	Diameter = 18° Pitch = 10°	Link	Legacy	11/1/2019	11/1/2019	100.00%	YES
	Door Hinge	Thrust Test	\$1.34	1	\$1.34	\$1.34	0.700	0.700	3-1/2 in. Satin Brass Square Corner Door Hinge	Link	10/2/2019	11/1/2019	10/2/2019	100.00%	YES
	Poplar Board	Thrust Test	Legacy	1	\$4.71	\$0.00	17.000	17.000	1 in x 4 in	Link	Legacy	11/1/2019	10/2/2019	100.00%	YES
								2.1000	// / ///						
				-	1										
									I			l			

Bill of Materials

Items	Category	Qty	Retail Price	Price	Fotal Wt. [oz]	% Complete	Completed
FlightLine RC 5055-390kV Brushless Motor	Propulsion	1	\$59.99	\$0.00	14.460	100.00%	YES
E-Flite Power 90 Brushless Outrunner Motor 325Kv	Propulsion	1	\$129.99	\$0.00	15.800	100.00%	YES
ADMIRAL 6s, 4000 mAh, 40 C, 22.2 V Battery	Power	1	\$79.99	\$0.00	21.090	100.00%	YES
Spare Battery	Power	1	\$79.99	\$79.99	21.090	92.31%	NO
Prop Adapters: Power 90	Fastener	2	\$17.09	\$17.09		76.92%	NO
X-Mount/Hardware: Power 90, Motor mounting hardware	Fastener	1	\$14.24	\$14.24	0.120	92.31%	NO
Futaba 6J 6-Channel S-FHSS System	Control	1	\$179.99	\$0.00	-	100.00%	YES
Futaba R2106GF 6-Channel S-FHSS Micro Receiver	Control	1	\$29.99	\$29.99	0.140	92.31%	NO
ZTW GECKO 85A ESC WITH 8A SBEC WITH XT-60 CONNECTOR	Control	1	\$49.36	\$0.00	2.650	100.00%	YES
Hitec HS-311 Plastic Gear Standard Servo	Control	7	\$62.93	\$0.00	10.570	92.31%	NO
Red Arming Plug	Safety	1	\$6.47	\$6.47	0.130	92.31%	NO
SAE 2019 Power Limiter V2 regular class 1000W	Safety	1	\$75.00	\$0.00	0.720	100.00%	YES
Cell Meter Battery Capacity Checker	Safety	1	\$8.99	\$8.99	1.760	100.00%	YES

Bill of Materials: Electronics

Items	Category	Qty	Retail Price	Price	Fotal Wt. [oz]	% Complete	Completed
Ailerons	Wing	2		\$0.00	0.000	69.23%	NO
Flap	Wing	2		\$0.00	0.000	61.54%	NO
Hinges	Wing	4		\$0.00	0.000	61.54%	NO
Support Spar	Wing	2		\$23.58	0.000	61.54%	NO
						0.00%	
Cargo Bay	Fuselage	1		\$0.00	0.000	61.54%	NO
Nose Cone	Fuselage	1		\$0.00	0.000	61.54%	NO
Electronics Bay	Fuselage	1		\$0.00	0.000	61.54%	NO
Hinges	Fuselage	4		\$0.00	0.000	61.54%	NO
						0.00%	NO
Elevator	Tail	2		\$0.00	0.000	61.54%	NO
Rudder	Tail	1		\$0.00	0.000	61.54%	NO
Vertical Stabilizer	Tail	1		\$0.00	0.000	61.54%	NO
Horizontal Stabilizer	Tail	1		\$0.00	0.000	61.54%	NO
Hinges	Tail	4		\$0.00	0.000	61.54%	NO

Bill of Materials: 3D Printing

	Items	Category	Qty	Retail Price	Price	Fotal Wt. [oz]	% Complete	Completed
	Dubro Super Lite Wheels 3"	Wheel	2	\$8.99	\$0.00	0.488	100.00%	YES
<u>ب</u>	Sullivan SkyLite Wheel	Wheel	2	\$38.66	\$0.00	4.460	100.00%	YES
Gear	Dubro Axle Shaft	Fastener	2	\$6.79	\$0.00	2.400	100.00%	YES
	Dubro Tail Wheel Assembly	Fastener	1	\$3.99	\$3.99	0.176	92.31%	NO
anding	Dubro Tail Wheel 1"	Wheel	1	\$2.48	\$2.48	0.680	92.31%	NO
Lan								
	[Shocks, if needed]						15.38%	
	[Shocks accessories, if needed]						15.38%	

Bill of Materials: Landing Gear

	Items	Category	Qty	Retail Price	Price	Total Wt. [oz]	% Complete	Completed
	Size Five Soccer Ball	Cargo	1	\$15.00	\$15.00	15.000	92.31%	NO
argo	Velcro Bands	Fastener	4	\$2.10	\$2.10	0.800	92.31%	NO
Ca	Steel Plates	Cargo	6	\$8.35	\$0.00	96.000	100.00%	YES
	Metal Screw	Fastener	6	\$1.18	\$1.18	0.423	92.31%	NO

Bill of Materials: Cargo

Items	Category	Qty	Retail Price	Price	Total Wt. [oz]	% Complete	Completed
Flite Test Water-Resistant Foam Board	Prototype	10	\$2.99	\$29.90	40.212	92.31%	NO
Gorilla Glue Hot Glue Sticks	Prototype	30	\$3.97	\$3.97	4.480	92.31%	NO
Polylactic Acid	Filament	3	\$20.99	\$0.00	317.700	100.00%	YES
Acrylonitrile Butadiene Styrene	Filament	5	\$18.99	\$0.00	882.500	100.00%	YES
Flexible	Filament	2	\$26.99	\$0.00	141.200	100.00%	YES
Light Weight Polylactic Acid	Filament	2	\$57.79	\$54.00	105.600	100.00%	YES
Loctite Gel Control 4g Super Glue	Fastener	2	\$2.98	\$2.98	0.560	92.31%	NO
APC Electric Propeller 16x8E	Propulsion	1	\$8.42	\$8.42	1.830	100.00%	YES
APC Electric Propeller 18x8E	Propulsion	1	\$11.13	\$11.13	3.030	92.31%	NO
APC Electric Propeller 18x10E	Propulsion	1	\$11.13	\$0.00	2.570	100.00%	YES
Door Hinge	Thrust Test	1	\$1.34	\$1.34	0.700	100.00%	YES
Poplar Board	Thrust Test	1	\$4.71	\$0.00	17.000	100.00%	YES

Bill of Materials: Testing

Testing

Sum total from each column	Value
Total # of parts	130
Total retail value of parts	\$1,052.99
Total expense to T513 (some parts were sponsored or reused from last	\$316.84
Total weight of parts (units: lb)	107.896
Total weight of electronics (units: lb)	5.533
Total weight of airplane components so far (units: lb)	4.847
BoM Progress Tracking	Value
# of parts left to order and/or 3d print	27
# of parts at 100% completion	19
# of parts in BoM	49
Total BoM % completion	39%

Bill of Materials: Project Progress

Targets and Metrics Backup

Function	Metric	Target	Method of Validation	Tools for Validation			
	Accelerate						
	Force	10 lbf	Experimental	Force Gauge/ Scale			
	Propeller Size	14in - 18in	Physical Experiment and Computations	Test sized propellers to determine maximum thrust and compare against DriveCalc prog ram			
Generate Thrust	Electric Motor Rating Kv Ratting	390 Kv Rat ing	Given by Manufacture	Manufacture Validated			
	Electric Motor Maximum Power	950W	Experimental	Apply current and measure voltage with a voltmeter			
	Propulsion System Ba ttery Voltage	22.2 V	Experimental	Voltmeter			
Taxi on Runway	Angular Steering for Front Wheel	-60° to 60°	Experimental	Attach to front wheel, test total rotation, and record time			

Function	Metric	Target	Method of Validation	Tools for Validation
		Accelera	te	
Apply Throttle	Velocity for Takeoff	30 mph	Theoretical Calculations	MATLAB, PropCal 3. 0
	Ground Distance for Takeoff	Less than 100 ft	Theoretical and Experimental	MATLAB and flight testing
	Propulsion system battery capacity	4000 mAh	Given by manufacturer	Manufacturer Validate d
	Propulsion System battery duration	10 minutes	Theoretical Calculations	Determined by current drawn by propulsion system
	Power limiter top limit	1000 W	Competition Requirement	Manufacturer Validated

	Lift				
		Angle of Attack	2-5 Degrees	Database Comparative Analysis	xlfr5
	Generate Pressure		Greater than 1.0	Theoretical Calculations	MATLAB
	Differential	Coefficient of Drag	Less than 1.0	Theoretical Calculations	MATLAB
		Wingspan	60 – 120 in	Theoretical	Prototyping, Solid works simulations, and MATLAB
		Wing Loading	10 –20 oz/ft²	Finite Element Analysis	MATLAB, SOLIDWORKS Simulation
	Structure	Gross-take-off weight	Less than 55 lbs	Theoretical Calculations, Physical Experimentation	SOLIDWORKS Simulation, digital scale
	Inhibit Stall	Stall Speed	Greater than 30mph	Theoretical Calculation	MATLAB simulation
Targets and Metrics		0	Greater than 25 Degrees	Experimentation	Flight testing and XLFR5

Function	Metric	Target	Method of Validation	Tools for Validation			
1	Decelerate						
Reduce throttle	Velocity for Landing	30mph		MATLAB, Prop Calc 3.0, testing motor and flight testing			
Engage Flaps	Time to deploy	1 Second	Experimental	Stopwatch			
	Angle of flaps	0°- 30°	-	SOLIDWORKS Simul ations			
Stabilize approach							
Absorb Landing Force	Force	2x Weight (lbf)	Theoretical	MATLAB and FEA			

Function	Metric	Target	Method of Validation	Tools for Validation
	ľ	Maneuver in	Flight	
	Servo Motor Angular Speed	-	Given by Manufacture	Manufacturer Validated
Servo Motors	Angular Pitch Positio n	-60° to 60°	Experimentally Test	Attach to control surface, test total rotation, and record time
	Angular Roll Position	-60° to 60°	Experimentally Test	Attach to control surface, test total rotation, and record time
	Angular Yaw Position	-60° to 60°	Experimentally Test	Attach to control surface, test total rotation, and record time

Function	Metric	Target	Method of Validation	Tools for Validation			
	Secure Cargo						
Load/Unload Payload	Time	2 Minutes	Human	Load/unload payload from cargo area with hands			
	Force	5 lbf	Experimental				
Carry Payload	Radio System Battery Current Capacity	1000 mAh	Rule Requirement	Manufacturer Validated			
	Radio System Battery Time Duration	6 min	Theoretical Calculations	Determined by current drawn by controller			
	·	Controll	er				
Radio Control System	Wavelength Frequency	2.4 GHz	Competition Require ment	Manufacturer Validated			
	Electronic speed controller continuous current	85 A	Given by Manufacturer	Manufacturer Validated			

