

TEAM 513: SAE AERO DESIGN COMPETITION

03-March-20

Team Introductions

Nestor
Aguirre
Aeronautics/
3D Printing
Engineer

Zachary Silver CAD Engineer

Martina Kvitkovicova Electronics Test Engineer

David Litter 3D Printing Engineer

Lopez
Electrical
Design
Engineer

Leah Evans
Aeronautics
Engineer/
Financial
Advisor

Sponsor and Advisor

Florida Space **Grant Consortium** Seminole RC Club

3D Solutech

Dr. Shih

Providing Funding

Providing Equipment

Providing Various Filaments

Providing Technical Knowledge

Overview

Mission Requirements

Performance Analysis

Design Overview

Expenses

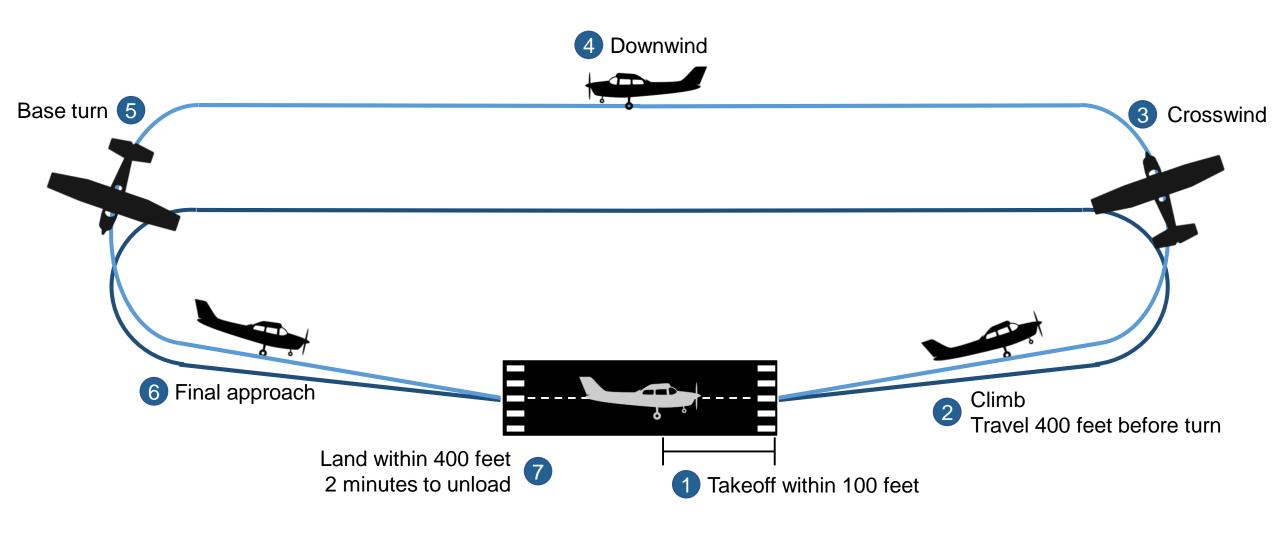
Future Work

Objective

The objective of this project is to design and manufacture a 3D printed remote controlled (RC) airplane that complies with all rules and regulations for competing in the regular class of the SAE Aero Design East competition.

Overview

Mission Requirements


Performance Analysis

Design Overview

Expenses

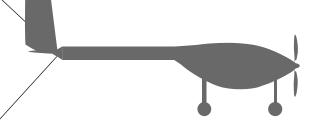
Future Work

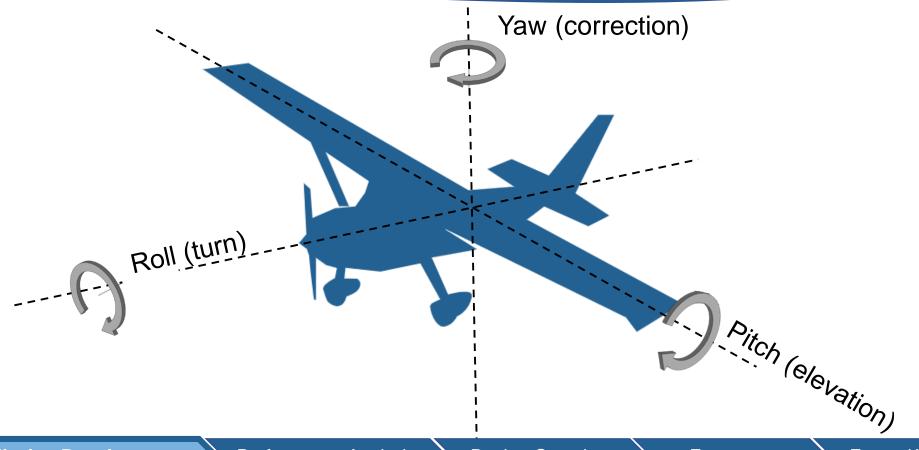
Competition Mission Requirements

Department of Mechanical Engineering Department of Electrical & Computer Engineering

Overview

Mission Requirements


Performance Analysis


Design Overview

Expenses

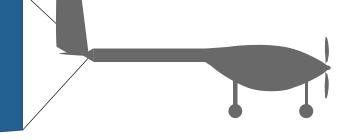
Future Work

Functional Decomposition: Maneuver in Flight

Overview

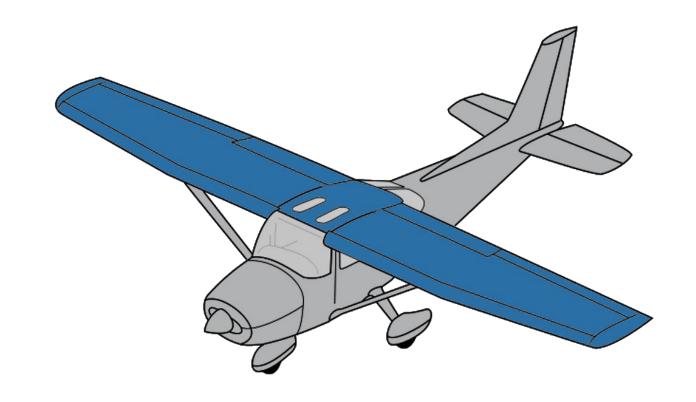
Mission Requirements

Performance Analysis


Design Overview

Expenses

Future Work


Mission Requirements

Generate Lift:

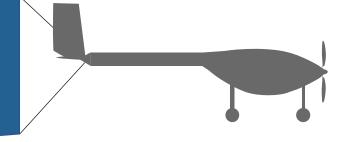
 \sim Wing loading: 10 – 20 oz/in²

 \times Lift coefficient: 1.4 – 2.5

Overview

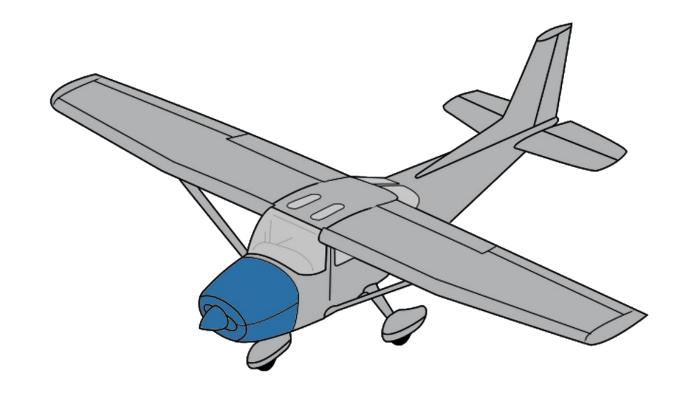
Mission Requirements

Performance Analysis


Design Overview

Expenses

Future Work



Mission Requirements

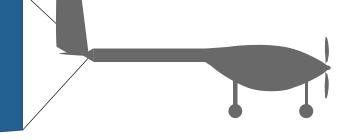
Accelerate/Decelerate:

★ Takeoff Speed: 20 – 30 mph

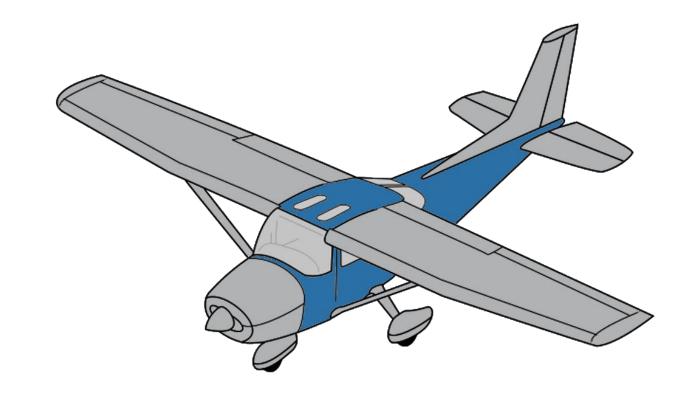
Overview

Mission Requirements

Performance Analysis


Design Overview

Expenses


Future Work

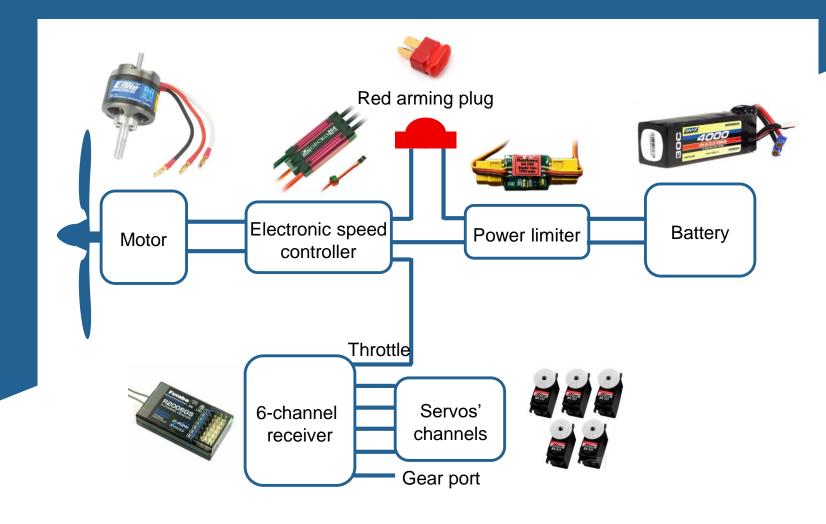
Mission Requirements

Transport Payload:

Overview

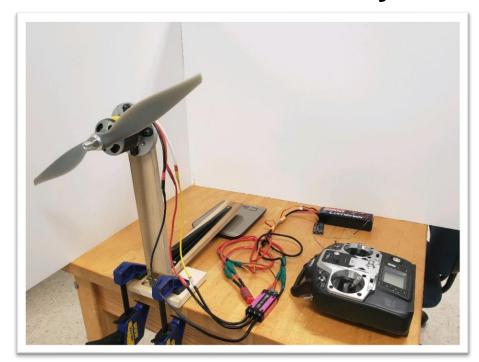
Mission Requirements

Performance Analysis


Design Overview

Expenses

Future Work


Electronics Setup


The final wiring diagram for the plane, showing the acquired parts and components to complete the circuit

Overview Mission Requirements **Performance Analysis Design Overview Future Work** Review Expenses FAMU-FSU Department of Mechanical Engineering 10 Engineering

Testing

Thrust Performance Analysis

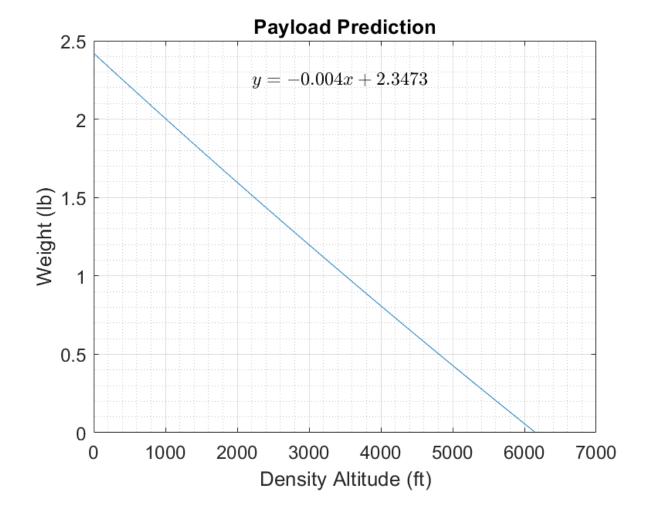
Overview

Mission Requirements

Performance Analysis

Design Overview

Expenses


Future Work

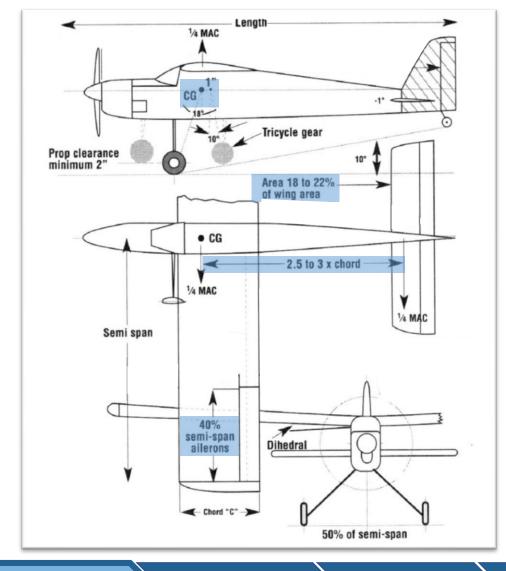
Performance Analysis: Payload

- Competition scoring based on ability to carry high payload
- For Lakeland, Florida (100 ft density altitude):

Overview

Mission Requirements

Performance Analysis


Design Overview

Expenses

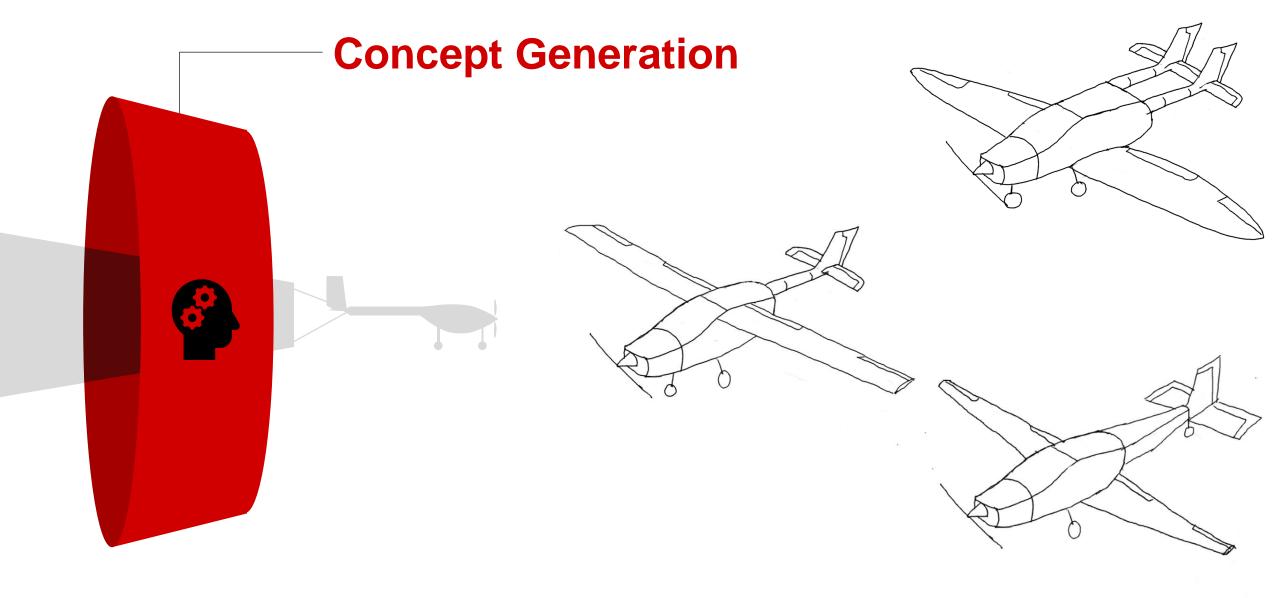
Future Work

Airplane Proportions

- ✓ Sized airplane using RC standards
- Wing size determines overall dimensions of airplane
- ✓ Performance sensitivities:

Overview

Mission Requirements


Performance Analysis

Design Overview

Expenses

Future Work

Overview

Mission Requirements

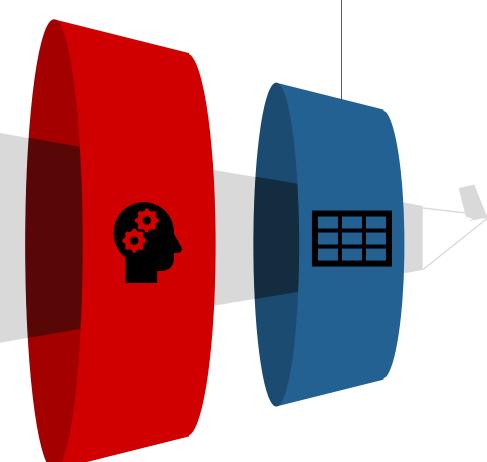
Performance Analysis

Design Overview

Expenses

Future Work

Review


Department of Mechanical Engineering
Department of Electrical & Computer Engineering

15

Nestor Aguirre

Concept Selection: Pugh Charts

		Concepts			
Selection Criteria	Concept 6	1	3	`4	8
Weight		+	-	S	+
Drag		+	-	-	S
Wingspan		S	S	-	S
Time to Unload		S	-	+	-
Manufacturing Time	8	-	S	+	-
Cost		-	S	S	+
# of pluses		2	0	2	2
# of minuses		2	3	2	2

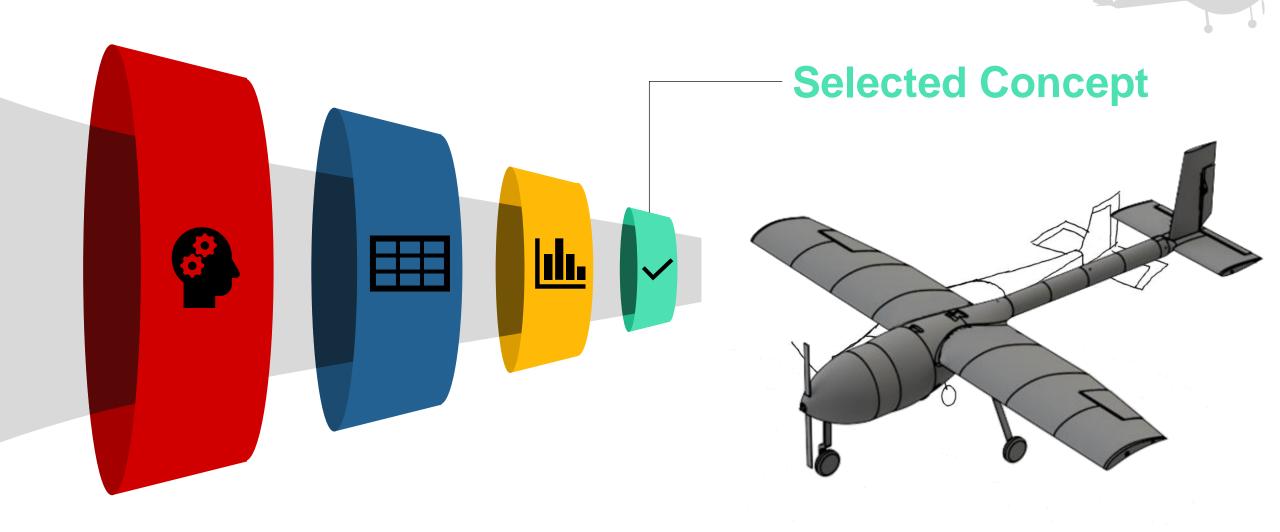
Overview

Mission Requirements

Performance Analysis

Design Overview

Expenses


Future Work

Review

Department of Mechanical Engineering
Department of Electrical & Computer Engineering

Overview

Mission Requirements

Performance Analysis

Design Overview

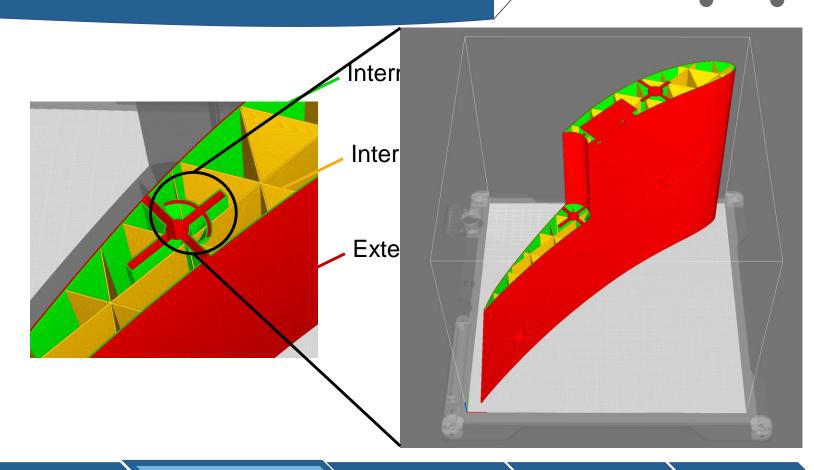
Expenses

Future Work

Review

Department of Mechanical Engineering
Department of Electrical & Computer Engineering

18


Nestor Aguirre

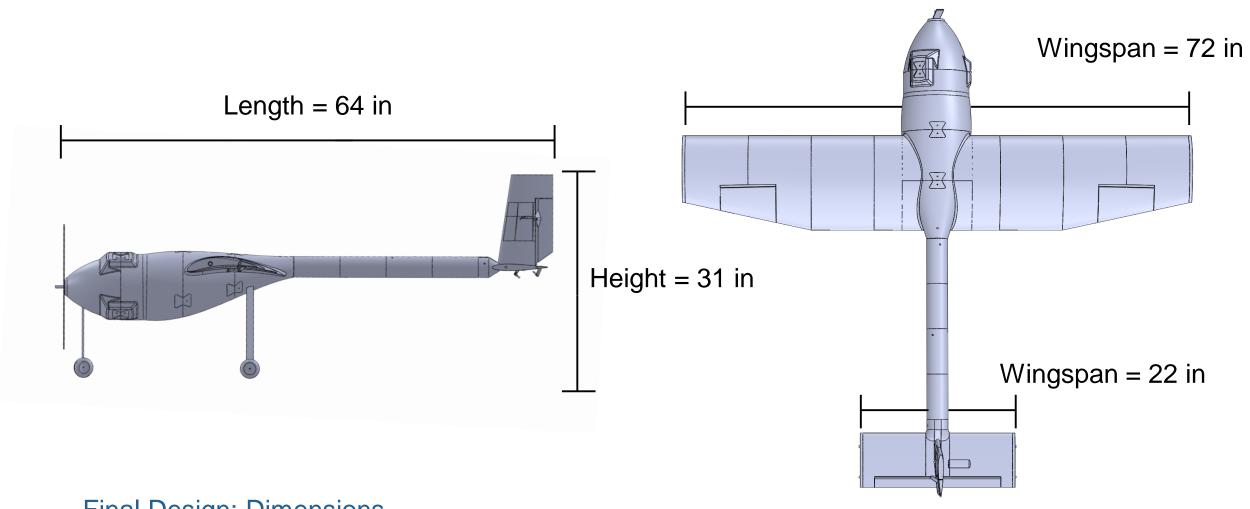
3D Printing

- - ✓ Internal structure
 - Custom supports

 - Looking at slice layer-bylayer

Overview

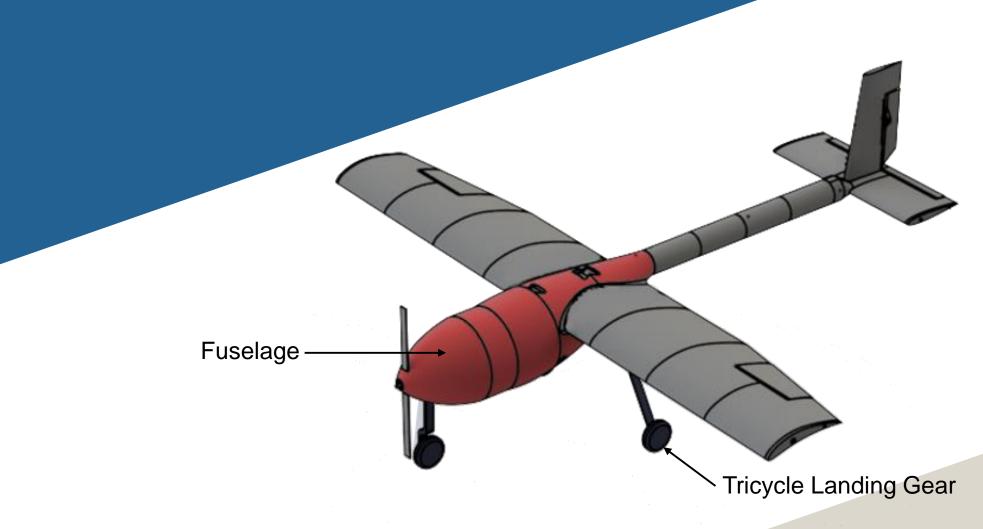
Mission Requirements


Performance Analysis

Design Overview

Expenses

Future Work



Final Design: Dimensions

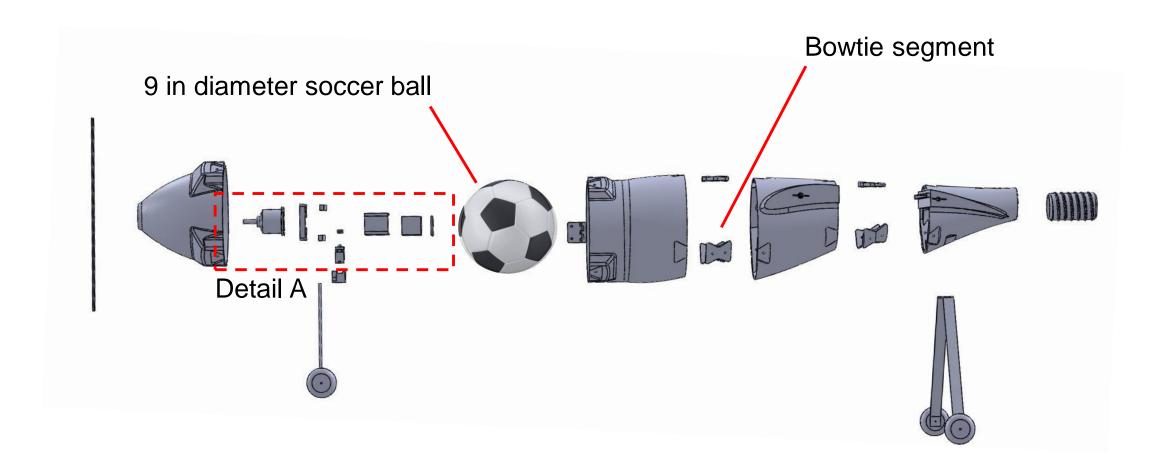
Overview Mission Requirements Performance Analysis Design Overview Expenses Future Work Review

Department of Mechanical Engineering
Department of Electrical & Computer Engineering

Zac Silver

Final Design Overview

Tapered fuselage with tricycle landing gear


Overview Mission Requirements Performance Analysis Design Overview Expenses Future Work Review

Department of Mechanical Engineering
Department of Electrical & Computer Engineering

21

Expenses FAMU-FSU Engineering

Zac Silver

Design Overview: Fuselage

The fuselage is five primary segments, with bowtie segments to fasten the fuselage together

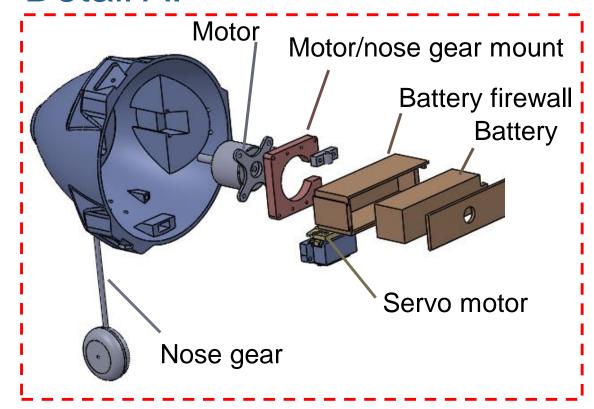
Overview

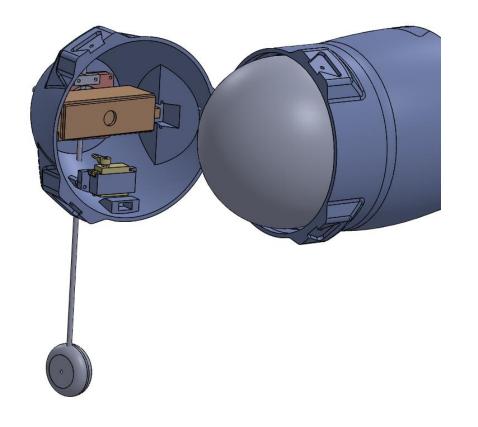
Mission Requirements

Performance Analysis

Design Overview

Expenses


Future Work


Review

Department of Mechanical Engineering
Department of Electrical & Computer Engineering

Detail A:

Design Overview: Electronics and Cargo Storage

A swinging nose cone, which houses all electronics, allows for front-loading of the cargo when open

Overview > Mission

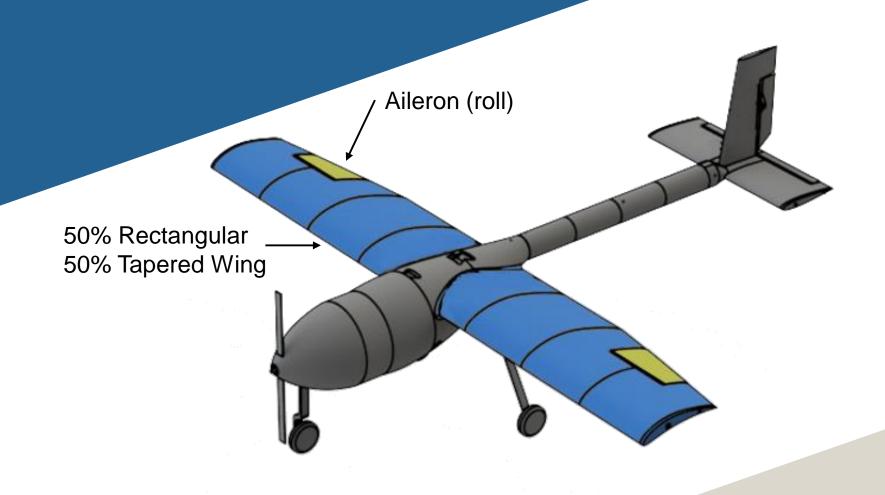
Mission Requirements

Performance Analysis

Design Overview

Expenses

Future Work


Review

Department of Mechanical Engineering
Department of Electrical & Computer Engineering

23

Zac Silver

Final Design Overview

Main wing and control surfaces

Department of Mechanical Engineering

Overview

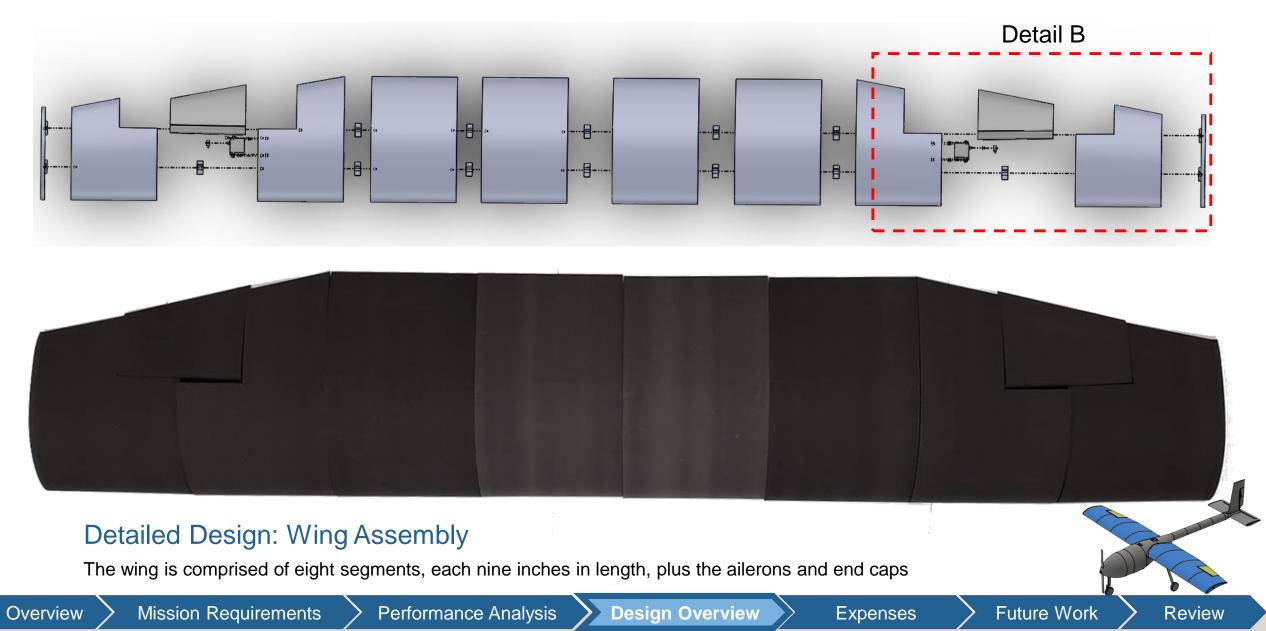
Department of Mechanical Engineering

Department of Electrical & Computer Engineering

Mission Requirements

Performance Analysis

Design Overview

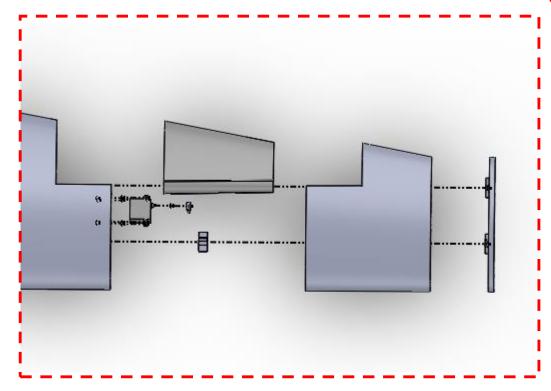

Expenses

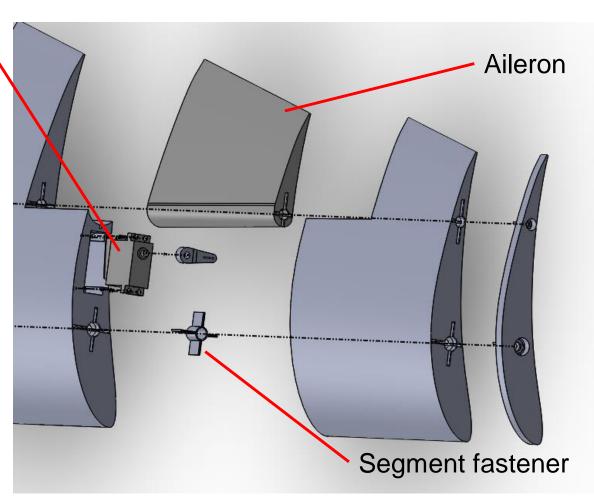
Future Work

Review

24

Department of Mechanical Engineering
Department of Electrical & Computer Engineering


25


Zac Silver

Detail B:

Detailed Design: Servo Motor Integration

Servo motor to control ailerons is located inside of the wing, affixed between two segments

Overview

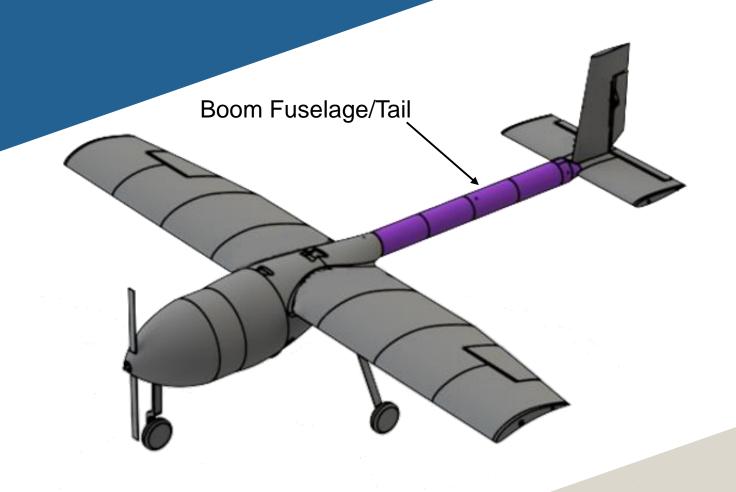
Mission Requirements

Performance Analysis

Design Overview

Expenses

Future Work


Review

Department of Mechanical Engineering
Department of Electrical & Computer Engineering

26

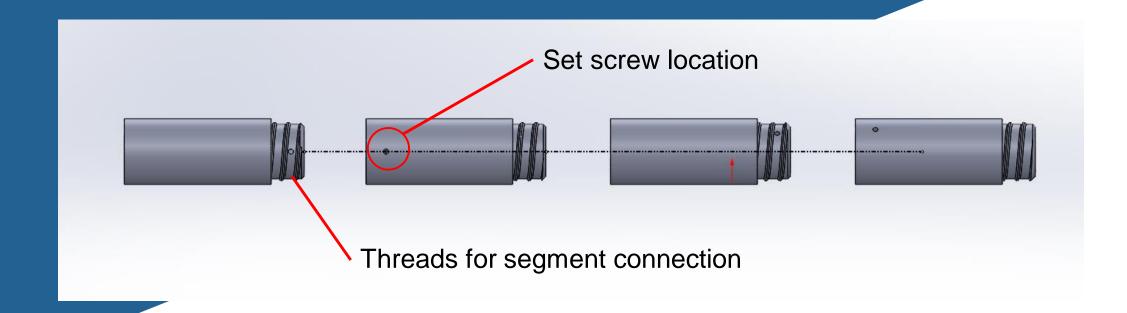
Zac Silver

Final Design Overview

Boom connects fuselage and wing to the tail

Department of Mechanical Engineering
Department of Electrical & Computer Engineering

Overview


Mission Requirements

Performance Analysis

Design Overview

Expenses

Future Work

Detailed Design: Boom Tail

The fuselage connects to the tail using a boom, made of four modular segments that fasten using screw threading

Overview Mission F

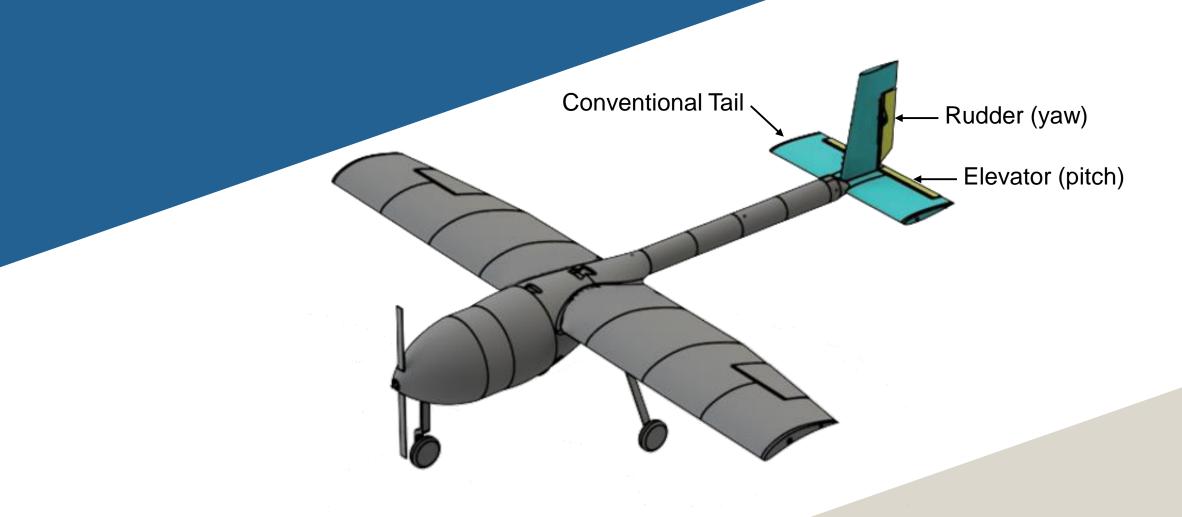
Mission Requirements

Performance Analysis

Design Overview

Expenses

Future Work


Review

Department of Mechanical Engineering
Department of Electrical & Computer Engineering

28

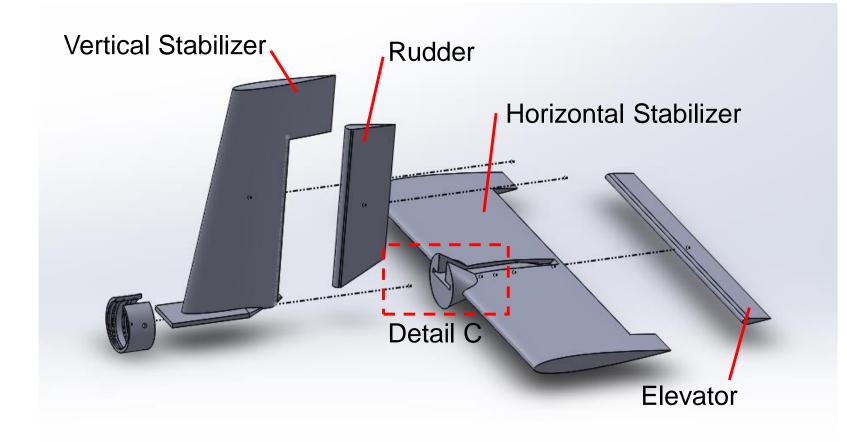
Zac Silver

Final Design Overview

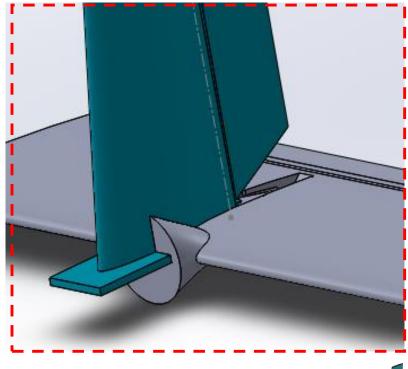
Conventional tail design with vertical and horizontal stabilizer

Department of Mechanical Engineering
Department of Electrical & Computer Engineering

Mission Requirements


Overview

Performance Analysis


Design Overview

Detailed Design

Future Work

Detail C:

Detailed Design: Horizontal and Vertical Stabilizer

The vertical stabilizer slides and locks into the horizontal stabilizer

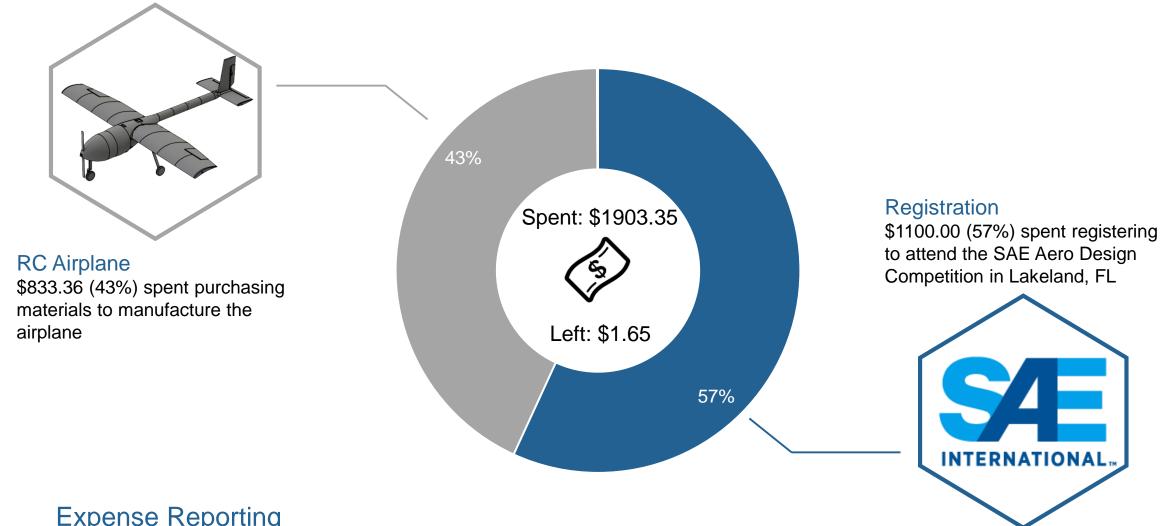
Overview > Mission Requirements

Performance Analysis

Design Overview

Detailed Design

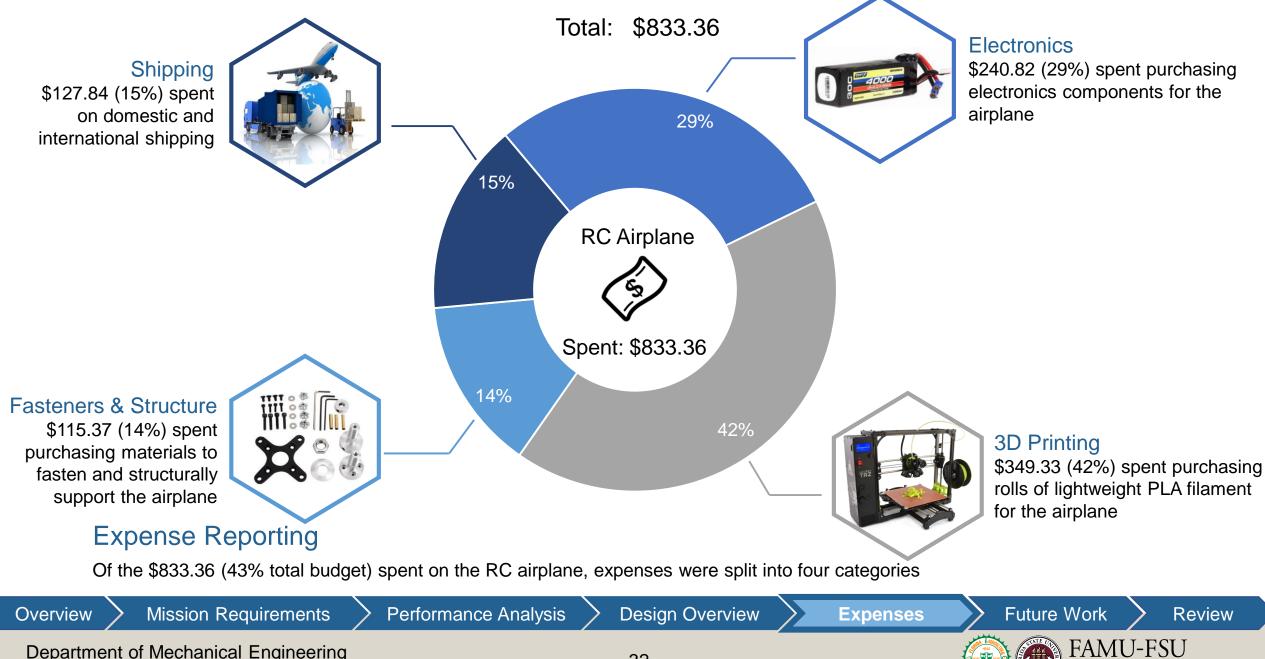
Future Work


Review

Department of Mechanical Engineering
Department of Electrical & Computer Engineering

30

Zac Silver

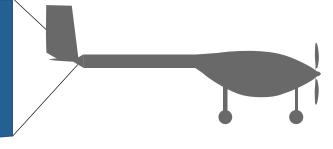


Expense Reporting

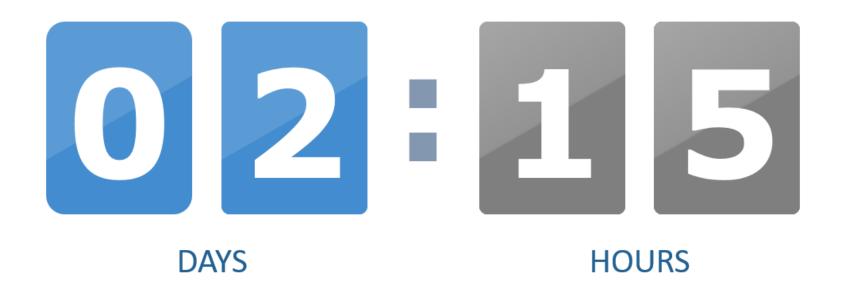
Project funding comes from \$1905 provided by the Florida Space Grant Consortium

Overview Mission Requirements Performance Analysis Design Overview **Future Work Expenses** Review FAMU-FSU

Engineering


Department of Mechanical Engineering
Department of Electrical & Computer Engineering

32


Martina Kvitkovičová

Future Work

SAE AERO DESIGN EAST COMPETITION

Overview

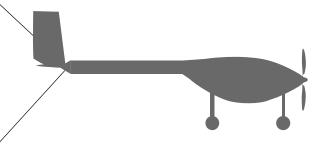
Mission Requirements

Performance Analysis

Design Overview

Expenses

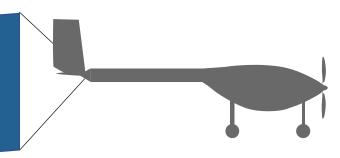
Future Work


Review

FAMU-FSU

Engineering

Most Important Points



- 1. The goal is to design and manufacture a 3D printed airplane capable of carrying a soccer ball and one pound of steel cargo.
- 2. Calculations are completed that estimate airplane performance, and dimensioning is also complete.
- 3. Manufacturing and assembly is nearly complete.
- 4. The team will attend the SAE Aero Design East competition this week.

Future Work Review

FAMU-FSU
Engineering

References

Anderson, J. D. (2016). Fundamentals of Aerodynamics (6th ed.). New York: McGraw-Hill Education.

Flap (Aeronautics). (2019, September 29). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Flap_(aeronautics)

Flight: Tail Designs. (n.d.). Retrieved from what-when-how: http://what-when-how.com/flight/tail-designs/

Fuselage . (2019, September 14). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Fuselage

Nicolai, L. M., & Carichner, G. (2010). Fundamentals of Aircraft and Airship Design, Volume I, Aircraft Design. Reston: AIAA.

Özgen, S. (2015, Novemeber). The Philosophy of Airplane Design. Retrieved from Middle East Technical University: http://www.ae.metu.edu.tr/~ae451/landing_gear.pdf

RC Airplanes. (2019). Retrieved from Horizon Hobby: https://www.horizonhobby.com/category/airplanes

SAE International. (2020, September 05). Series Resources 2020 SAE Aero Design Rules. Retrieved from SAE Aero Design:

https://www.saeaerodesign.com/cdsweb/gen/DocumentResources.aspx

Simons, M. (2015). Model Aircraft Aerodynamics. Englad: Special Interest Model Books Ltd.

Staples, G. (2013, July 16). Propeller Static & Dynamic Thrust Calculation. Retrieved September 27, 2019, from ElectricRCaircraftGuy:

https://www.electricrcaircraftguy.com/2013/09/propeller-static-dynamic-thrust-equation.html Wing Configuration. (2019, September 9). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Wing configuration

Questions?

Backup Slides

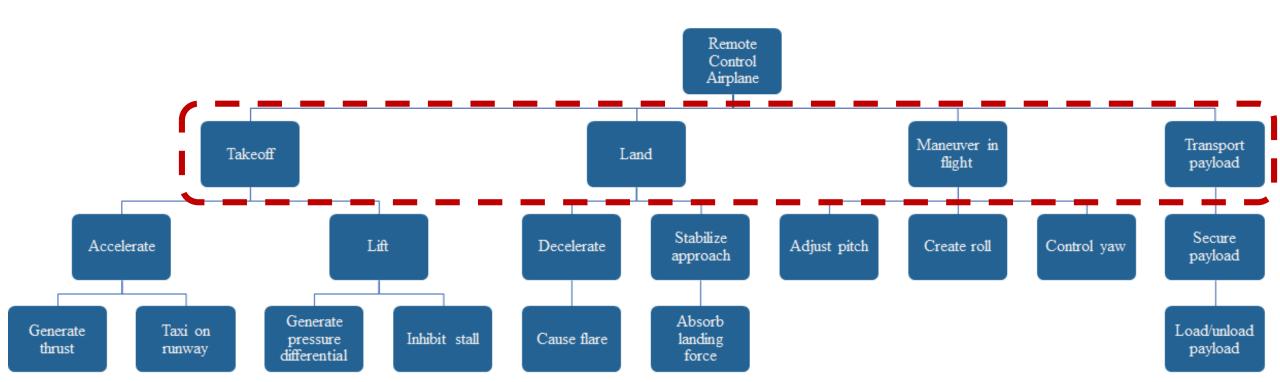
Functional Decomp

Concept Selection

Concept Generation

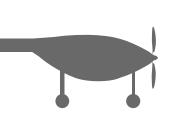
Detailed Concepts

Detailed Math

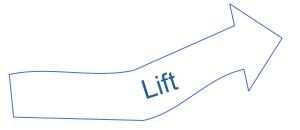

Bill of Materials

Targets and Metrics

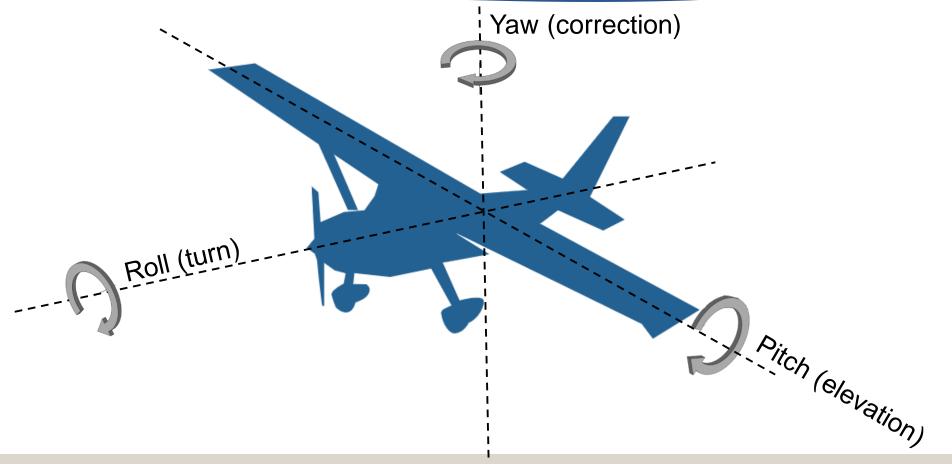
_


Functional Decomp Backup

Functional Decomposition

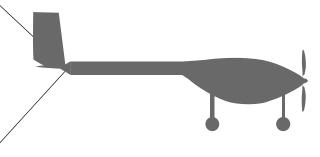


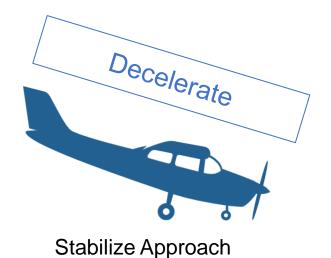
Functional Decomposition: Takeoff

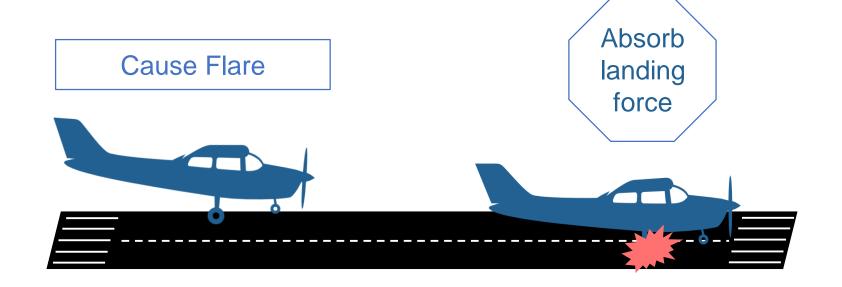


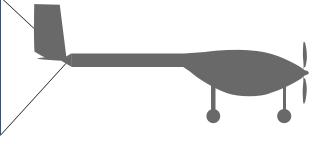
Generate Thrust Taxi on Runway

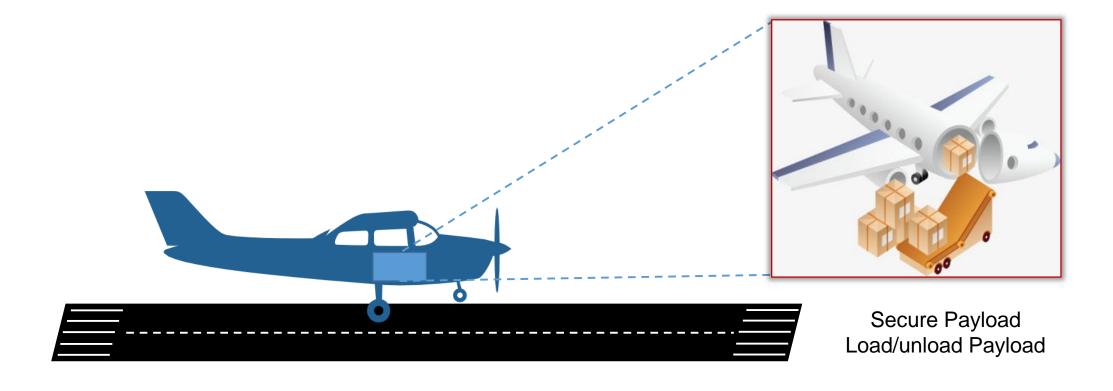
Generate Pressure Differential Inhibit Stall

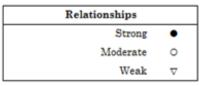

Functional Decomposition: Maneuver in Flight






Functional Decomposition: Land




Functional Decomposition: Transport Payload

Concept Selection Backup

House of Quality

Direction of Improvement		
Maximize	A	
Target	\langle	
Minimize	•	

			Column#	1	2	3	4	5	6	7	8	9	10
			Direction of Improvement	•	A	A	\Q	A	\Q	•	▼	•	▼
Weight Chart	Relative Weight	CustomerImportance	Customer Requirements (Explicit and Implicit)	Weight(Lb)	Thrust (lbf)	Lift (lbf)	Drag (lbf)	Acceleration (fds^2)	Weight Distribution (lbf(x))	Wingspan (in)	Time to Unload Gargo (sec)	Price (\$)	Manufacturing Time (sec)
	16%	10	Fly	•	•	•	•	•	▽	•	▽	▽	0
•	10%	6	Carry Payload	•	•	•	•	•	•	0	0	▽	0
•	8%	5	Takeoff Distance	•	•	•	•	•	▽	•	0	0	•
•	8%	5	Landing	•	•	0	•	•	▽	▽	▽	0	•
•	8%	5	Cost	▽	•	▽	▽	0	0	0	▽	•	0
-	15%	9	3-D Printed	•	▽	▽	▽	•	0	•	•	•	•
•	10%	6	Flight Stability	0	▽	•	•	0	•	•	•	▽	0
•	10%	6	Payload Accesibility	▽	▽	▽	•	0	•	▽	•	▽	•
_	16%	10	Safety	•	•	▽	▽	0	0	0	•	0	▽
			Technical Importance Rating	700	629	464.5	590.3	638.7	409.7	554.8	535.5	345.2	509.7
			Relative Weight	13%	12%	9%	11%	12%	8%	10%	10%	6%	9%
			Weight Chart						_		•	_	_
	Weight Chart	□ 16% □ 10% □ 8% □ 8% □ 15% □ 10% □ 10%	16% 10 10% 6 8% 5 8% 5 8% 5 15% 9 10% 6	Direction of Improvement	Direction of Improvement	Direction of Improvement	Direction of Improvement	Direction of Improvement V A A O V V V					

Initial Pugh Selection Chart

		Concepts						
Selection Criteria	Concept 7	1	2	3	4	5	6	8
Weight		+	-	-	S	S	+	+
Drag		+	S	-	S	-	S	+
Wingspan		+	+	+	S	S	+	+
Time to Unload	DATER	+	-	S	S	-	+	-
Manufacturing Time	DATUM	-	-	+	S	S	+	-
Cost		-	+	S	+	+	S	+
# of pluses		4	2	2	1	1	4	4
# of minuses		2	3	2	0	2	0	2

Pugh Chart 1

Eliminated Concept 2 & 5. Concept 6 becomes new datum.

Final Pugh Selection Chart

		Concepts			
Selection Criteria	Concept 6	1	3	4	8
Weight		+	-	S	+
Drag		+	-	-	S
Wingspan		S	S	-	S
Time to Unload	DATED	S	-	+	-
Manufacturing Time	DATUM	-	S	+	-
Cost		-	S	S	+
# of pluses		2	0	2	2
# of minuses		2	3	2	2

Pugh Chart 2

Eliminated Concept 3 & 8. Concept 1, 4, and 6 transfer to AHP.

$Criteria\ 1-Drag$

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	1.460	0.480	3.044
Concept 4	0.346	0.115	3.010
Concept 6	1.230	0.405	3.033
Avg Con: 3.029	Con Index: 0.015	Con Ratio: 0.028	Consistent?: Yes

Criteria 2 – Weight

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	1.230	0.405	3.033
Concept 4	0.346	0.115	3.010
Concept 6	1.460	0.480	3.044
Avg Con: 3.029	Con Index: 0.015	Con Ratio: 0.028	Consistent?: Yes

Analytic Hierarchy Process

Overview of drag and weight criteria

Criteria 3 – Wingspan

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	0.790	0.260	3.033
Concept 4	0.320	0.106	3.011
Concept 6	1.946	0.633	3.072
Avg Con: 3.039	Con Index: 0.019	Con Ratio: 0.037	Consistent?: Yes

Criteria 4 - Time to Unload

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	0.790	0.260	3.033
Concept 4	0.320	0.106	3.011
Concept 6	1.946	0.633	3.072
Avg Con: 3.039	Con Index: 0.019	Con Ratio: 0.037	Consistent?: Yes

Analytic Hierarchy Process

Overview of wingspan and time to unload criteria

Criteria 5 – Manufacturing Time

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	0.273	0.091	3.000
Concept 4	1.364	0.455	3.000
Concept 6	1.364	0.455	3.000
Avg Con: 3.000	Con Index: 0.000	Con Ratio: 0.000	Consistent?: Yes

Criteria 6 - Cost

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Concept 1	1.853	0.574	3.230
Concept 4	0.427	0.140	3.049
Concept 6	0.897	0.286	3.133
Avg Con: 3.137	Con Index: 0.069	Con Ratio: 0.132	Consistent?: No

Analytic Hierarchy Process

Overview of manufacturing time and cost criteria

AHP Criteria Weights and Consistency Check

	Weighted Sum Vector	Criteria Weight	Consistency (Con)
Drag	2.840	0.369	7.697
Wingspan	1.387	0.212	6.554
Time to Unload	0.607	0.097	6.268
Weight	1.044	0.156	6.711
Manufacturing Time	0.962	0.143	6.739
Cost	0.159	0.024	6.591
Avg Con: 6.760	Con Index: 0.152	Con Ratio: 0.122	Consistent?: No

Analytic Hierarchy Process

Overview of criteria weights

[Final Rating Matrix] ^T					
Selection Criteria	Concept 1	Concept 4	Concept 6		
Drag	0.480	0.115	0.405		
Weight	0.405	0.115	0.480		
Wingspan	0.260	0.106	0.633		
Time to Unload	0.260	0.106	0.633		
Manufacturing Time	0.091	0.455	0.455		
Cost	0.574	0.140	0.286		

	Criteria We	eights {W}					
		Weight					
	Drag	0.369					
		0.212					
	Wingspan	0.097					
7	Time to Unload	0.156					
	_	0.143					
	Cost	0.024					

	Alternative Value
Concept 1	0.355
Concept 4	0.162
Concept 6	0.483

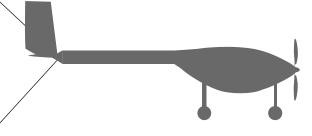
Analytic Hierarchy Process


Overview of final selection matrix

Selected Concept: Concept Six

- ★ Tapered Wings

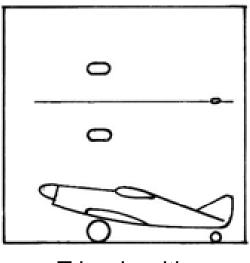
- **★LW PLA**



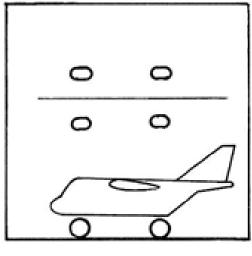
Concept Generation Backup

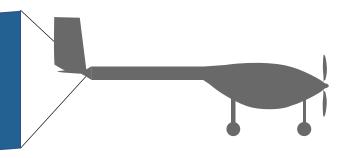
Modular Connections	3D Materials	Propeller Size		Number of Blades	Landing Gear	Landing Gear Mechanism	Landing Gear Suspension	Wings	Wing	Wing Orientation	Alleron/Flaps	Motor	14.5	Electronics add	Battery	Tail
Compression	PLA	Large Prop	Large Pitch	2 Blade	Tricycle with Front Wheel	Fixed	Fixed	Elliptical	Low Wing	Uniform Leading Edge	Plain	Low ky Rating	Flying boat	Speed Densor	High Battery Capacity	Conventional
Formfit	ABS	Small Prop	Small Pitch	6350	Tricycle with Tail-Wheel	Retractable	3D Printed Flexible	Tapered	Mid Wing	Swept	Split	High kv Rating	Double booms	Gyroscope	Low Batter Capacity	T-Tail
Glue	LW-PLA		7	4 Blade	Four Wheels		Metal Fleible	Rectangular	High Wing		Slotted		Symmetric from side view	Camera	Higher Ampacity	Cruciform
Fasteners	TPU				Ski-Plane		Shocks	Inverted			Fowler		SubSonics	Illumination	Appropriate C rating	Dual
Japanese glue free joints	PP				65			Winglets			Double-Slotted Fowler		Super Sonic	Extra Battery		Triple
T-joint glued form fit								Triangular			Junkers		High capacity sub sonic	Special Speed Controller		v
Soldering											Gouge		High manurability super sonic			Inverted V
											Fairey- Youngman					Inverterd Y
E .											Zap					Twin
3											Krueger					Boom
38	9	8									Gurney					High Boom
											Leading Edge Droop					Multiple-plane tail
											Handley-page					

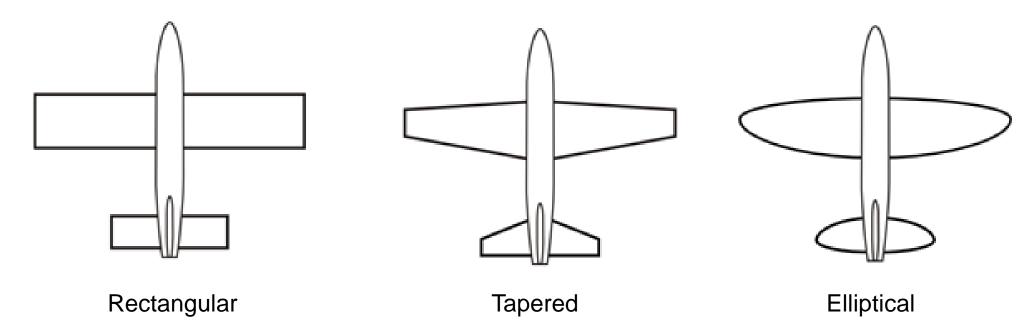
Excel table which combined morphological chart and crap shoot method to generate 100 concepts

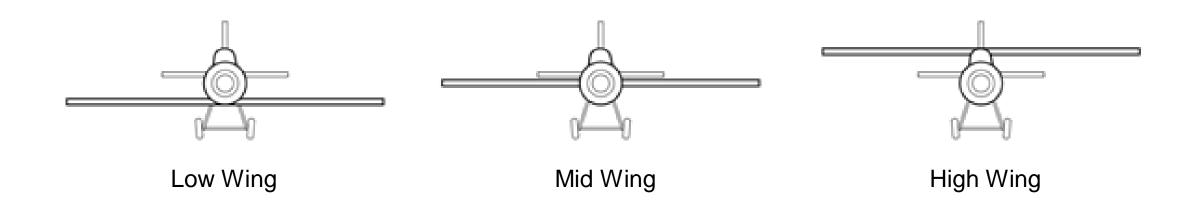

Concept Generation Chart

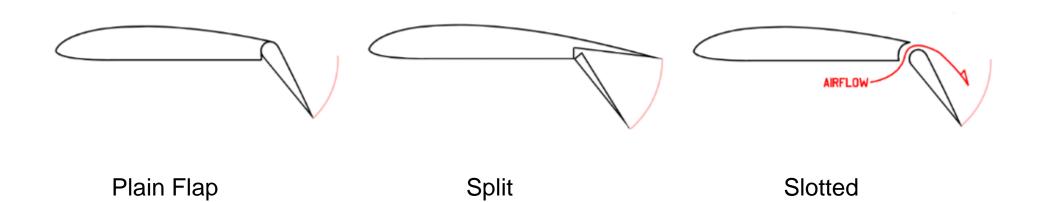
3D Material	Landing Gear	Wings	Wing Location	Aileron/Flaps	Fuselage	Tail
PLA	Tricycle with Front Wheel	Elliptical	Low Wing	Plain	Flying boat	Conventional
ABS	Tricycle with Tail- Wheel	Tapered	Mid Wing	Split	Double booms	T-Tail
LW-PLA	Four Wheels	Rectangular	High Wing	Slotted	Subsonic	Cruciform
					High Capacity Subsonic	Triple
						Twin
						Boom
						High Boom


Landing Gear Configuration

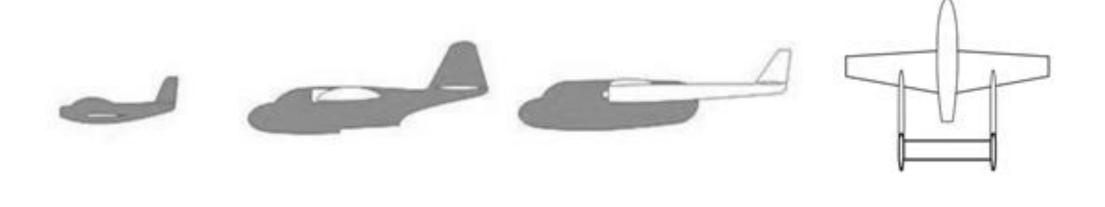

Tricycle with Front Wheel


Tricycle with Tail Wheel


Four Wheel


Wing Planform

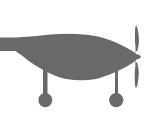
Wing Location



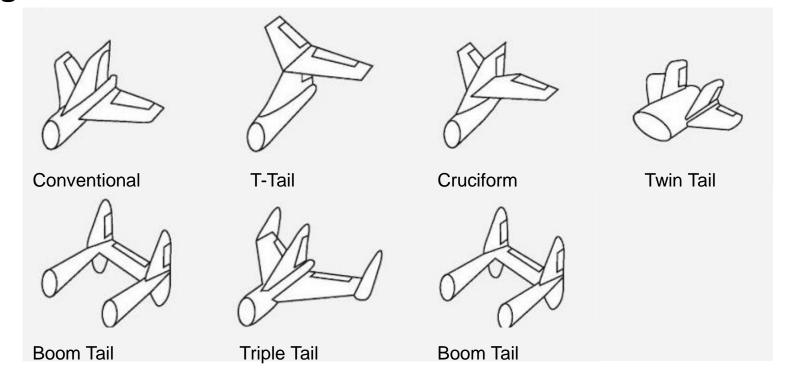
Aileron and flaps

High Capacity Subsonic

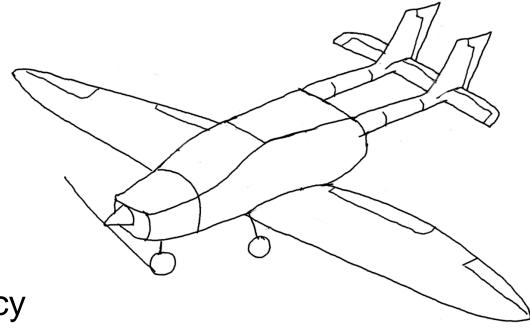
Fuselage



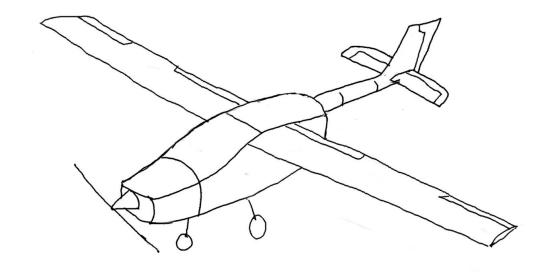
Subsonic


Flying Boat

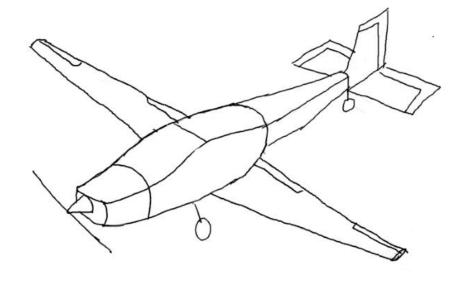
Double Boom



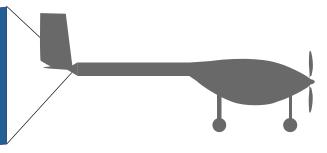
Tail Configuration


Detailed Concept Backup

Concept One


Concept Four

- Light weight PLA
- ✓ Slotted flap increases lift and decreases drag
- ★ Rectangular wing is the least efficient design


Concept Six

- ✓ Increase the lift
- ∠ Light weight PLA

Detailed Math Backup

Takeoff Calculation

Takeoff Ground Distance:
$$S_G = \int_0^{V_{\text{TO}}} \frac{V dV}{a} = \frac{1}{2} \int_0^{V_{\text{TO}}} \frac{dV^2}{a}$$

Takeoff Velocity:
$$V_{\text{TO}} = 1.2 V_{\text{stall}} = 1.2 \sqrt{\frac{W_{\text{TO}}}{S_{\text{ref}}}} \frac{2}{\rho C_{L_{\text{max}}}}$$

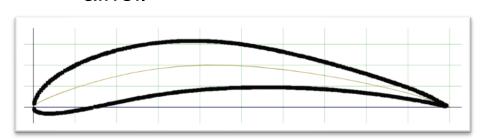
Command Window

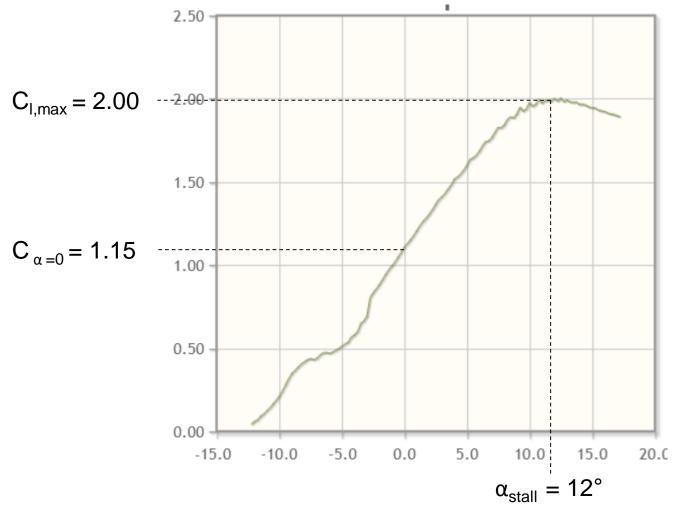
For an airplane with 15.000 lb weight, 72.000 in wingspan, and 14.000 in chord length yields 7.000 ft^2 wing area, 5.143 aspect ratio, and 34.286 oz/in^2 wing loading

The required velocity for take off is 34.441793 ft/s or 23.483034 mph

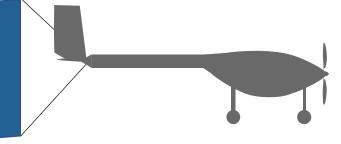
The required ground distance for take off considering thrust is 32.506 ft
The above doesnt include drag, and thrust is a rough estimate at 8.500000 in the calculation

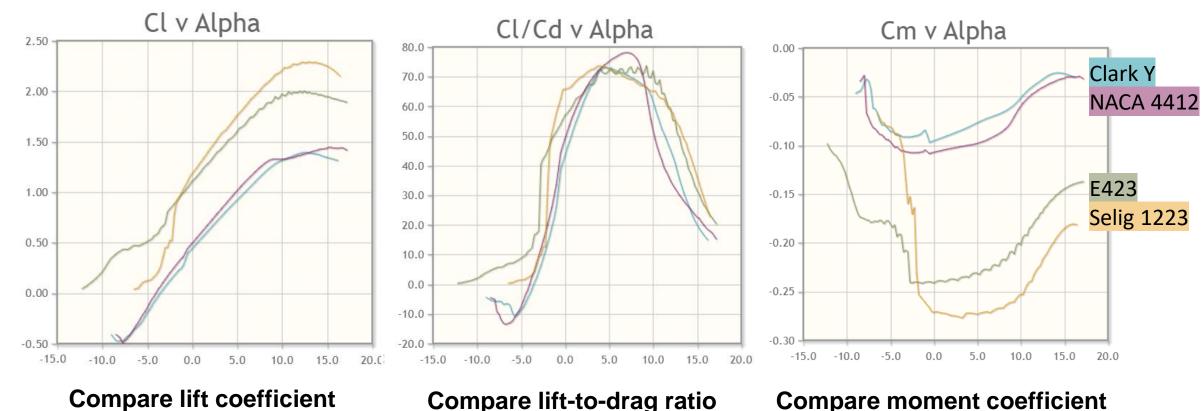
The required ground distance traveled for take off considering lift and drag is 49.665579 ft





Lift Coefficient (C_I) vs Angle of Attack (α)


Airfoil Selection


- ✓ Selected the Eppler E423
- Satisfies targets for lift coefficient and stall angle of attack
- Designed as a heavy lift UAV airfoil

Airfoil Selection

Department of Mechanical Engineering Department of Electrical & Computer Engineering

Compare lift-to-drag ratio

Compare moment coefficient

Wing Sizing

Design Progress Future Work Review

FAMU-FSU
Engineering

Bill of Materials Backup

					_								
Item No.	Items Purchased with FSGC Grant	\$	/ Unit	Qty		Price	Pri	ce w/ Tax	Category		Category	Cos	t
1	SAE Competition Registration	\$1,	100.00	1	\$	1,100.00	\$	1,100.00	Registration		Registration	\$	1,100.00
2	Onxy 22.2V 63 4000mAh 30C LiPo Battery, EC5 connector	\$	76.39	2	\$	152.78	\$	164.24	Electronics		Electronics	\$	240.82
3	Futaba R2006GS 6-Channel S-FHSS Receiver	\$	39.99	1	\$	39.99	\$	42.99	Electronics		Filament	\$	349.33
4	Onyx LiPo Charge Protection Bag	\$	8.99	1	\$	8.99	\$	9.66	Misc		Structure	\$	93.85
	Item 2, 3, 4 with \$30 off discount						\$	(30.00)			Misc	\$	21.52
5	E-flite Prop Adapters: Power 90	\$	17.09	1	\$	17.09	\$	18.20	Electronics		Shipping	\$	127.84
6	E-flite X-Mount/Hardware: Power 90/110/160	\$	14.24	1	\$	14.24	\$	15.17	Structure				
7	APC 18x8 Thin Electric Propeller	\$	11.13	1	\$	11.13	\$	11.85	Misc				
	Item 5, 6, 7, shipping and handling						\$	15.40	Shipping				
8	Al 6061 Spar 0.37"x0.035"x0.305"	\$	9.94	2	\$	19.88	\$	39.76	Structure				
9	Al 6061 Spar 0.25"x0.035"x0.18"	\$	9.73	2	\$	19.46	\$	38.92	Structure				
	Item 8 and 9 shipping and handling						\$	21.96	Shipping				
10	Colorfabb Light Weight PLA 0.75kg roll	\$	30.91	6	\$	185.46	\$	185.46	Filament				
	Item 10 Shipping						\$	43.20	Shipping				
11	Colorfabb Light Weight PLA 0.75kg roll	\$	32.77	5		\$163.87		\$163.87	Filament				
	Item 11 Shipping							35.29	Shipping				
12	Hitec Servo Wire 50' 3 Color	\$	15.39	1	\$	15.39	\$	15.39	Electronics				
	Item 12 Shipping						\$	11.99	Shipping				
	Total Item Count			24									
	Total Expended							1,903.35					
	Total Remaining						\$	1.65					

Purchasing Log

	Items	Category	\$ / Unit	Qty	Retail Price	Price V	Wt. / Unit [oz]	Total Wt. [oz]	Dimensions / Specs	Source	Purchased/Printed	Need By Date	Received	Completition Percentage	e Completed
	FlightLine RC 5055-390kV Brushless Motor	Propulsion	Legacy	1	\$59.99	\$0.00	14.460	14.460	3.14" x 1.97 "	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	E-Flite Power 90 Brushless Outrunner Motor 325Kv	Propulsion	Legacy	1	\$129.99	\$0.00	15.800	15.800	diameter: 2.21" length: 2"	Link	No	11/27/2019	10/25/2019	100.00%	YES
	ADMIRAL 6s, 4000 mAh, 40 C, 22.2 V Battery	Power	Legacy	1	\$79.99	\$0.00	21.090	21.090	5.51" x 1.77" x 1.65"	Link	No	11/27/2019	9/6/2019	100.00%	YES
	Spare Battery	Power	\$79.99	1	\$79.99	\$79.99	21.090	21.090	5.51" x 1.77" x 1.65"	Link	No	11/27/2019		92.31%	NO
	Prop Adapters: Power 90	Fastener	\$8.55	2	\$17.09	\$17.09			6mm propeller adapter for E-flite 90 motor	Link	10/31/2019	11/27/2019		76.92%	NO
cs	X-Mount/Hardware: Power 90, Motor mounting hardware	Fastener	\$14.24	1	\$14.24	\$14.24	0.120	0.120	3.90" x 2.40" x 0.49"	Link	10/31/2019	11/27/2019		92.31%	NO
i i i	Futaba 6J 6-Channel S-FHSS System	Control	Legacy	1	\$179.99	\$0.00	-	-	4.8" x 10.2 x 16"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
Electron	Futaba R2106GF 6-Channel S-FHSS Micro Receiver	Control	\$29.99	1	\$29.99	\$29.99	0.140	0.140	1.5" x 0.85" x 0.40"	Link	No	11/27/2019		92.31%	NO
苗	ZTW GECKO 85A ESC WITH 8A SBEC WITH XT-60 CONNECTOR	Control	Legacy	1	\$49.36	\$0.00	2.650	2.650	2.59" x 1.29" x 0.62"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	Hitec HS-311 Plastic Gear Standard Servo	Control	\$8.99	7	\$62.93	\$0.00	1.510	10.570	1.57" x 0.78" x 1.44"	Link	No	11/27/2019		92.31%	NO
	Red Arming Plug	Safety	\$6.47	1	\$6.47	\$6.47	0.130	0.130	0.28" x 0.50" x 0.5"	Link	No	11/27/2019		92.31%	NO
	SAE 2019 Power Limiter V2 regular class 1000W	Safety	Legacy	1	\$75.00	\$0.00	0.720	0.720	0.5" x 0.5" x 2.00"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	Cell Meter Battery Capacity Checker	Safety	\$8.99	1	\$8.99	\$8.99	1.760	1.760	3.26" x 0.98"	Link	10/28/209	11/27/2019	10/30/2019	100.00%	YES
														0.00%	
	Ailerons	Wing		2		\$0.00		0.000		<u>N.A</u>	No	11/27/2019		69.23%	NO
	Flap	Wing		2		\$0.00		0.000		N.A	No	11/27/2019		61.54%	NO
	Hinges	Wing		4		\$0.00		0.000	1	N.A	No	11/27/2019		61.54%	NO
	Support Spar	Wing		2		\$23.58		0.000		Link	No	11/27/2019		61.54%	NO
		Ü												0.00%	
	Cargo Bay	Fuselage		1		\$0.00		0.000	The Charles and anti-mainly 1911 1 cm.	N.A	No	1/6/2020		61.54%	NO
50	Nose Cone	Fuselage		1		\$0.00		0.000	The \$/unit and unit weight will be determined once the	N.A	No	1/6/2020		61.54%	NO
3D Printing	Electronics Bay	Fuselage		1		\$0.00		0.000	airplane CAD is created. It is assumed all these parts will be	N.A	No	1/6/2020		61.54%	NO
Į.	Hinges	Fuselage		4		\$0.00		0.000	printed with the Light Weight Polylactic Acid.	N.A	No	1/6/2020		61.54%	NO
DE									1					0.00%	NO
	Elevator	Tail		2		\$0.00		0.000	1	N.A	No	1/6/2020		61.54%	NO
	Rudder	Tail		1		\$0.00		0.000	1	N.A	No	1/6/2020		61.54%	NO
	Vertical Stabilizer	Tail		1		\$0.00		0.000	1	N.A	No	1/6/2020		61.54%	NO
	Horizontal Stabilizer	Tail		1		\$0.00		0.000	1	N.A	No	1/6/2020		61.54%	NO
	Hinges	Tail		4		\$0.00		0.000	1	N.A	No	1/6/2020		61.54%	NO
	Dubro Super Lite Wheels 3"	Wheel	Legacy	2	\$8.99	\$0.00	0.244	0.488	OD = 3" ID axle = 0.178"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
Ħ	Sullivan SkyLite Wheel w/Aluminum Hub 4-1/2"	Wheel	Legacy	2	\$38.66	\$0.00	2.230	4.460	OD = 4.5" ID axle= 1.6"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
ĕ	Dubro Axle Shaft	Fastener	Legacy	2	\$6.79	\$0.00	1.200	2.400	OD = 0.1875" Length axle= 2"	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	Dubro Tail Wheel Assembly	Fastener	\$3.99	1	\$3.99	\$3.99	0.176	0.176	For 1" dubro tail wheel	Link	No	11/27/2019		92.31%	NO
Landing	Dubro Tail Wheel 1"	Wheel	\$2.48	1	\$2.48	\$2.48	0.680	0.680	OD = 1" for tail wheel assembly	Link	No	11/27/2019		92.31%	NO
Ľ															
	[Shocks, if needed]							1				1/6/2020		15.38%	
	[Shocks accessories, if needed]				L							1/6/2020		15.38%	
	Size Five Soccer Ball	Cargo	\$15.00	1	\$15.00	\$15.00	15.000	15.000	100% Butylene Size 5 ball (official size)	Link	No	11/27/2019		92.31%	NO
Cargo	Velcro Bands	Fastener	\$0.53	4	\$2.10	\$2.10	0.200	0.800	General Purpose Peel & Stick	Link	No	11/27/2019		92.31%	NO
Ü	Steel Plates	Cargo	Legacy	6	\$8.35	\$0.00	16.000	96.000	A36 Steel Plate	Link	Legacy	11/27/2019	9/6/2019	100.00%	YES
	Metal Screw	Fastener	\$0.20	6	\$1.18	\$1.18	0.071	0.423	#8 x 1-1/2 in. Phillips Flat Head Plated Sheet Metal Screw	Link	No	11/27/2019		92.31%	NO
	Flite Test Water-Resistant Foam Board By Adams	Prototype	\$2.99	10	\$2.99	\$29.90	4.021	40.212	L = 20" W = 30" thick = 3/16"	Link	No	11/27/2019		92.31%	NO
	Gorilla Glue Hot Glue Sticks	Prototype	\$0.13	30	\$3.97	\$3.97	0.149	4.480	8" tall multipurpose temp range	Link	No	11/26/2019		92.31%	NO
	Polylactic Acid	Filament	\$0.33	3	\$20.99	\$0.00	105.900	317.700	35.3 Oz	Link	Sponsered	11/1/2019	9/26/2019	100.00%	YES
	Acrylonitrile Butadiene Styrene	Filament	\$0.20	5	\$18.99	\$0.00	176.500	882.500	35.3 Oz	Link	Sponsered	11/1/2019	9/26/2019	100.00%	YES
	Flexible	Filament	\$0.50	2	\$26.99	\$0.00	70.600	141.200	35.3 Oz	Link	Sponsered	11/1/2019	9/26/2019	100.00%	YES
50	Light Weight Polylactic Acid	Filament	\$1.09	2	\$57.79	\$54.00	52.800	105.600	26.4 Oz	Link	9/6/2019	11/1/2019	9/20/2019	100.00%	YES
Testing	Loctite Gel Control 4g Super Glue	Fastener	\$10.64	2	\$2.98	\$2.98	0.280	0.560	0.14 Oz	Link	No	11/1/2019		92.31%	NO
Tes	APC Electric Propeller 16x8E	Propulsion	\$8.42	1	\$8.42	\$8.42	1.830	1.830	Diameter = 16" Pitch = 8"	Link	10/30/2019	11/1/2019	11/1/2019	100.00%	YES
	APC Electric Propeller 18x8E	Propulsion	\$11.13	1	\$11.13	\$11.13	3.030	3.030	Diameter = 18" Pitch = 8"	Link	10/31/2019	11/1/2019		92.31%	NO
	APC Electric Propeller 18x10E	Propulsion	Legacy	1	\$11.13	\$0.00	2.570	2.570	Diameter = 18" Pitch = 10"	Link	Legacy	11/1/2019	11/1/2019	100.00%	YES
	Door Hinge	Thrust Test	\$1.34	1	\$1.34	\$1.34	0.700	0.700	3-1/2 in. Satin Brass Square Corner Door Hinge	Link	10/2/2019	11/1/2019	10/2/2019	100.00%	YES
	Poplar Board	Thrust Test	Legacy	1	\$4.71	\$0.00	17.000	17.000	1 in x 4 in	Link	Legacy	11/1/2019	10/2/2019	100.00%	YES
								1							
					<u> </u>			1							

Bill of Materials

Bill of Materials: Electronics

bi	
in	
int	
P	
$\overline{}$	
3	

Items	Category	Qty	Retail Price	Price	Total Wt. [oz]	% Complete	Completed
Ailerons	Wing	2		\$0.00	0.000	69.23%	NO
Flap	Wing	2		\$0.00	0.000	61.54%	NO
Hinges	Wing	4		\$0.00	0.000	61.54%	NO
Support Spar	Wing	2		\$23.58	0.000	61.54%	NO
						0.00%	
Cargo Bay	Fuselage	1		\$0.00	0.000	61.54%	NO
Nose Cone	Fuselage	1		\$0.00	0.000	61.54%	NO
Electronics Bay	Fuselage	1		\$0.00	0.000	61.54%	NO
Hinges	Fuselage	4		\$0.00	0.000	61.54%	NO
						0.00%	NO
Elevator	Tail	2		\$0.00	0.000	61.54%	NO
Rudder	Tail	1		\$0.00	0.000	61.54%	NO
Vertical Stabilizer	Tail	1		\$0.00	0.000	61.54%	NO
Horizontal Stabilizer	Tail	1		\$0.00	0.000	61.54%	NO
Hinges	Tail	4		\$0.00	0.000	61.54%	NO

Bill of Materials: 3D Printing

	Items	Category	Qty	Retail Price	Price	Total Wt. [oz]	% Complete
	Dubro Super Lite Wheels 3"	Wheel	2	\$8.99	\$0.00	0.488	100.00%
<u>.</u>	Sullivan SkyLite Wheel	Wheel	2	\$38.66	\$0.00	4.460	100.00%
Gear	Dubro Axle Shaft	Fastener	2	\$6.79	\$0.00	2.400	100.00%
) 8	Dubro Tail Wheel Assembly	Fastener	1	\$3.99	\$3.99	0.176	92.31%
Landing	Dubro Tail Wheel 1"	Wheel	1	\$2.48	\$2.48	0.680	92.31%
Jan							
I	[Shocks, if needed]						15.38%
	[Shocks accessories, if needed]						15.38%

Bill of Materials: Landing Gear

Completed
YES
YES

YES NO NO

	Items	Category	Qty	Retail Price	Price	Total Wt. [oz]	% Complete	Completed
	Size Five Soccer Ball	Cargo	1	\$15.00	\$15.00	15.000	92.31%	NO
rgo	Velcro Bands	Fastener	4	\$2.10	\$2.10	0.800	92.31%	NO
Ca	Steel Plates	Cargo	6	\$8.35	\$0.00	96.000	100.00%	YES
	Metal Screw	Fastener	6	\$1.18	\$1.18	0.423	92.31%	NO

Bill of Materials: Cargo

Door Hinge	Thrust Test	1	\$1.34	\$1.34	0.700	100.00%		
Poplar Board	Thrust Test	1	\$4.71	\$0.00	17.000	100.00%		
Dill of Motoriola, Tooting								

Qty

10

30

3

5

2

2

2

Retail Price

\$2.99

\$3.97

\$20.99

\$18.99

\$26.99

\$57.79

\$2.98

\$8.42

\$11.13

\$11.13

Price

\$29.90

\$3.97

\$0.00

\$0.00

\$0.00

\$2.98

\$8.42

\$11.13

\$0.00

\$54.00

Total Wt. [oz]

40.212

4.480

317.700

882.500

141.200

105.600

0.560

1.830

3.030

2.570

Bill of Materials: Testing

% Complete

92.31%

92.31%

100.00%

100.00%

100.00%

100.00%

92.31%

100.00%

92.31%

100.00%

Completed

NO

NO

YES

YES

YES

YES

NO

YES

NO

YES YES YES

Sum total from each column	Value
Total # of parts	130
Total retail value of parts	\$1,052.99
Total expense to T513 (some parts were sponsored or reused from last	\$316.84
Total weight of parts (units: lb)	107.896
Total weight of electronics (units: lb)	5.533
Total weight of airplane components so far (units: lb)	4.847
BoM Progress Tracking	Value
# of parts left to order and/or 3d print	27
# of parts at 100% completion	19
# of parts in BoM	49
Total BoM % completion	39%

Bill of Materials: Project Progress

Targets and Metrics Backup

Function	Metric	Target	Method of Validation	Tools for Validation				
	Accelerate							
	Force	10 lbf	Experimental	Force Gauge/ Scale				
	Propeller Size	14in - 18in	Physical Experiment and Computations	Test sized propellers to determine maximum thrust and compare against DriveCalc prog ram				
Generate Thrust		390 Kv Rat ing	Given by Manufacture	Manufacture Validated				
	Electric Motor Maximum Power	950W	Experimental	Apply current and measure voltage with a voltmeter				
	Propulsion System Ba ttery Voltage	22.2 V	Experimental	Voltmeter				
Taxi on Runway	Angular Steering for Front Wheel	-60° to 60°	Experimental	Attach to front wheel, test total rotation, and record time				

Function	Metric	Target	Method of Validation	Tools for Validation					
	Accelerate								
	Velocity for Takeoff	30 mph	Theoretical Calculations	MATLAB, PropCal 3.					
	Ground Distance for Less th Takeoff 100 ft		Theoretical and Experimental	MATLAB and flight testing					
Apply Throttle	Propulsion system battery capacity	4000 mAh	Given by manufacturer	Manufacturer Validate d					
	Propulsion System battery duration	10 minutes	Theoretical Calculations	Determined by current drawn by propulsion system					
	Power limiter top limit	1000 W	Competition Requirement	Manufacturer Validated					

		Lift		
	Angle of Attack	2-5 Degrees	Database Comparative Analysis	xlfr5
Generate Pressure	Coefficient of Lift	Greater than 1.0	Theoretical Calculations	MATLAB
Differential	Coefficient of Drag	Less than 1.0	Theoretical Calculations	MATLAB
	Wingspan	60 – 120 in	Experimental and Theoretical Calculations	Prototyping, Solid works simulations, and MATLAB
	Wing Loading	10 –20 oz/ft²	Finite Element Analysis	MATLAB, SOLIDWORKS Simulation
Structure	Gross-take-off weight	Less than 55 lbs	Theoretical Calculations, Physical Experimentation	SOLIDWORKS Simulation, digital scale
	Stall Speed	Greater than 30mph	Theoretical Calculation	MATLAB simulation
Inhibit Stall	Stall Angle of Attack	Greater than 25 Degrees	Experimentation	Flight testing and XLFR5

Function	Metric	Target	Method of Validation	Tools for Validation					
	Decelerate								
Reduce throttle	Velocity for Landing	30mph	ns and	MATLAB, Prop Calc 3.0, testing motor and flight testing					
Engage Flaps	Time to deploy	1 Second	Experimental	Stopwatch					
	Angle of flaps	0°- 30°		SOLIDWORKS Simul ations					
		Stabilize app	proach						
Absorb Landing Force	Force	2x Weight (lbf)	Theoretical	MATLAB and FEA					

Function	Metric	Target	Method of Validation	Tools for Validation				
	Maneuver in Flight							
	Servo Motor Angular Speed	1 *	Given by Manufacture	Manufacturer Validated				
Servo Motors	Angular Pitch Positio n	-60° to 60°	Experimentally Test	Attach to control surface, test total rotation, and record time				
	Angular Roll Position	-60° to 60°	Experimentally Test	Attach to control surface, test total rotation, and record time				
	Angular Yaw Position	-60° to 60°	Experimentally Test	Attach to control surface, test total rotation, and record time				

Function	Metric	Target	Method of Validation	Tools for Validation
Secure Cargo				
Load/Unload Payload	Time	2 Minutes	Human	Load/unload payload from cargo area with hands
Carry Payload	Force	5 lbf	Experimental	
	Radio System Battery Current Capacity	1000 mAh	Rule Requirement	Manufacturer Validated
	Radio System Battery Time Duration	6 min	Theoretical Calculations	Determined by current drawn by controller
Controller				
Radio Control System	Wavelength Frequency	2.4 GHz	Competition Require ment	Manufacturer Validated
	Electronic speed controller continuous current	85 A	Given by Manufacturer	Manufacturer Validated

