

# Team 514: FSGC – Human Exploration

# Rover Challenge

Author 1: Tavares L. Butler; Author 2: Phillip M. Dimacali ; Author 3: Jessica T.

Meeker ; Author 4: Lazaro A. Rodriguez ; Author 5: Jerald T. Yee

FAMU-FSU College of Engineering 2525 Pottsdamer St. Tallahassee, FL. 32310



# Abstract

The abstract is a concise statement of the significant contents of your project. The abstract should be one paragraph of between 150 and 500 words. The abstract is not indents.

*Keywords*: list 3 to 5 keywords that describe your project.



# Disclaimer

Your sponsor may require a disclaimer on the report. Especially if it is a government sponsored project or confidential project. If a disclaimer is not required delete this section.



# Acknowledgement

These remarks thanks those that helped you complete your senior design project. Especially those who have sponsored the project, provided mentorship advice, and materials. 4

- Paragraph 1 thank sponsor!
- Paragraph 2 thank advisors.
- Paragraph 3 thank those that provided you materials and resources.
- Paragraph 4 thank anyone else who helped you.



| Table of Contents             |
|-------------------------------|
| Abstractii                    |
| Disclaimeriii                 |
| Acknowledgementiv             |
| List of Tables                |
| List of Figures x             |
| Notationxii                   |
| Chapter One: EML 4551C 1      |
| 1.1 Project Scope 1           |
| 1.2 Customer Needs            |
| 1.3 Functional Decomposition7 |
| 1.4 Target Summary14          |
| 1.5 Concept Generation        |
| Generation Methods            |
| Medium Fidelity Concepts      |
| High Fidelity Concepts        |
| 1.6 Concept Selection         |
| Binary Comparison             |
| House of Quality              |
| Team 514                      |



| Pugh Charts                          |    |
|--------------------------------------|----|
| Analytical Hierarchy Process (AHP)   |    |
| Selection                            | 53 |
| 1.8 Spring Project Plan              | 55 |
| Chapter Two: EML 4552C               | 58 |
| 2.1 Spring Plan                      | 58 |
| Project Plan.                        | 58 |
| Build Plan                           | 58 |
| Appendices                           | 59 |
| Appendix A: Code of Conduct          | 60 |
| Appendix B: Functional Decomposition | 64 |
| Appendix C: Target Catalog           | 65 |
| Appendix D: Work Breakdown Structure | 67 |
| Appendix E: Generated Concepts List  | 73 |
| References                           |    |



# List of Tables

| Table 1.1.1 Stakeholders                     | 2   |
|----------------------------------------------|-----|
| Table 1.2.1 Customer Needs                   |     |
| Table 1.3.1 Functional Cross Reference Table | 13  |
| Table 1.3.2 Device Action and Outcome Table  | 13  |
| Table 1.4.1 Functional Targets and Metrics   | 15  |
| Table 1.4.2 Additional Targets and Metrics   | 17  |
| Table 1.4.3 Mission-Critical Targets         |     |
| Table 1.5.1 Morphological Chart              |     |
| Table 1.5.2 Generated Concept Example        |     |
| Table 1.6.1 Binary Comparison Table          |     |
| Table 1.6.2 House of Quality                 |     |
| Table 1.6.3 Front Suspension Pugh I          |     |
| Table 1.6.4 Front Suspension Pugh II         |     |
| Table 1.6.5 Wheel Design Pugh I              |     |
| Table 1.6.6 Wheel Design Pugh II             | 39  |
| Table 1.6.7 Wheels Pugh III                  | 40  |
| Table 1.6.8 Driver Layout Pugh I             |     |
| Table 1.6.9 Driver Layout Pugh II            |     |
| Table 1.6.10 Drivetrain Pugh I               |     |
| Table 1.6.11 Front Suspension AHP            | 44  |
| Table 1.6.12 Front Suspension Normalization  | 44  |
| Team 514                                     | vii |



| Table 1.6.13 Front Suspension Consistency Check      |  |
|------------------------------------------------------|--|
| Table 1.6.14 Front Suspension Consistency Comparison |  |
| Table 1.6.15 Wheel Design AHP                        |  |
| Table 1.6.16 Normalized Wheel Design AHP             |  |
| Table 1.6.17 Wheel Design Consistency Check          |  |
| Table 1.6.18 Wheel Design Consistency Comparison     |  |
| Table 1.6.19 Driver Layout AHP                       |  |
| Table 1.6.20 Normalized Driver Layout AHP            |  |
| Table 1.6.21 Driver Layout Consistency Check         |  |
| Table 1.6.22 Driver Layout Consistency Comparison    |  |
| Table 1.6.23 Drivetrain AHP                          |  |
| Table 1.6.24 Normalized Drivetrain AHP               |  |
| Table 1.6.25 Drivetrain Consistency Check            |  |
| Table 1.6.26 Drivetrain Consistency Comparison       |  |
| Table 1.6.27 Selected System and Concept             |  |
| Table 1.6.28 Selected Concepts                       |  |
| Table 1.6.29 Selected Concepts Considered for R&D    |  |
| Table C1 Target Catalog                              |  |
| Table D1 Team 514 Work Breakdown Structure           |  |
| Table E1 Generated Concepts List                     |  |





# List of Figures

| Figure 1.3.1 Device, System, Subsystem Functional Decomposition Flowchart    | . 7 |
|------------------------------------------------------------------------------|-----|
| Figure 1.3.2 Provide safety System Functional Decomposition                  | . 8 |
| Figure 1.3.3 Provide Structural Stability Functional Decomposition Flowchart | . 9 |
| Figure 1.3.4 Translate Motion System Functional Decomposition Flowchart      | . 9 |
| Figure 1.3.5 Complete Rover Functional Decomposition Flowchart               | 10  |
| Figure 1.3.6 Cross-Referenced Rover Functional Decomposition Flowchart       | 12  |
| Figure 1.5.1 Ski-Prone Pilot Concept Rendering                               | 23  |
| Figure 1.5.2 Built-In Tire Suspension Concept Rendering                      | 23  |
| Figure 1.5.3 Sideways Trike Concept Rendering                                | 24  |
| Figure 1.5.4 Prone Pilot Tricycle Concept Rendering                          | 25  |
| Figure 1.5.5 Diamond Rover Concept Rendering                                 | 25  |
| Figure 1.5.6 Rigid Bi-Wheel Fork Concept Rendering                           | 26  |
| Figure 1.5.7 Ski-Fork Concept Rendering                                      | 27  |
| Figure 1.5.8 Single Input Driver Layout Concept Rendering                    | 27  |
| Figure 1.5.9 Solid-Axle Double-Input Drivetrain Concept Rendering            | 28  |
| Figure 1.5.10 Foam Core Wheel Concept Rendering                              | 29  |
| Figure 1.5.11 Independent Suspension Fork Concept Rendering                  | 30  |
| Figure 1.5.12 Linkage Drivetrain Concept Rendering                           | 31  |
| Figure 1.5.13 Custom Variable Viewfinder Concept Rendering                   | 31  |
| Figure 1.5.14 Deployable Solar Cell Concept Rendering                        | 32  |
| Figure B1 Complete Rover Functional Decomposition Flowchart                  | 54  |
| Team 514                                                                     | X   |



xi



# Notation

| AHP  | Analytical Hierarchy Process                  |
|------|-----------------------------------------------|
| CAD  | Computer Aided Design                         |
| FSGC | Florida Space Grant Consortium                |
| HoQ  | House of Quality                              |
| NASA | National Aeronautics and Space Administration |

xii



# **Chapter One: EML 4551C**

### **1.1 Project Scope**

# **Project Description:**

A human-powered vehicle capable of safely and quickly transporting two individuals through regolith terrain, particularly, considering guidelines set by the NASA Human Rover Exploration Challenge.

### Key Goals:

The key goals of this project are as follows:

- Drivetrain provides necessary power
- Rover Successfully traverses regolith terrain
- Wheel assembly is originally designed and manufactured
- Drivetrain is originally designed and manufactured
- Rover components are structurally sound
- Misalignments and vibrations are minimized
- Rover is capable and competitive
- Rover Pilots are kept safe

### Markets:

The markets surrounding the FSGC – Human Exploration Rover are hierarchical. The primary, immediate markets consist of organizations performing space exploration and those who require a vehicle to traverse regolith terrain. Secondary markets may include hobbyists, outdoorsmen, and smaller organizations that require a capable off-road vehicle such as ski resorts and remote nature parks.



# **Assumptions:**

The following assumptions are made regarding the Exploration Rover:

- Vehicle will be designed, specified, and verified using earth's physical specifications.
- Drivetrain will be entirely human-powered
- Rover pilots will control steering, propulsion, and braking
- Test terrain is regolith
- Two individuals will pilot rover
- Design will abide by the 2020 NASA Human Exploration Rover Challenge Guidebook

### **Stakeholders:**

The stakeholders who hold interest and will ultimately have an impact regarding the outcome of this project are tabulated below as well as their role in decision making and financial contributions.

### Table 1.1.1 *Stakeholders*

| Stakeholder                        | Financial | Decision Maker |
|------------------------------------|-----------|----------------|
| Shayne McConomy                    | ~         | ~              |
| Chiang Shih                        | ~         | ✓              |
| Keith Larson                       |           | ✓              |
| FAMU-FSU College of<br>Engineering | ~         | ~              |
| NASA                               |           | ✓              |



# **1.2 Customer Needs**

The goal of our project is to design a vehicle capable of competing in the NASA Human Exploration Rover Challenge. The challenge consists of an obstacle course imitating the Martian surface along with tasked to be completed during the course. The competition presents a unique challenge for the customer needs as they are primarily derived from the competition guidebook and input from our Sponsor/Advisor. The guidebook gives a total points breakdown, and from this breakdown the team decides on which obstacles and tasks to attempt to maximize total points earned. The guidebook is only a list of standards that must be met, and the team will decide on the best route to maximize point totals that align with the given customer needs.

### Table 2.2.1 *Customer Needs*

| Customer Statement                                                                                                                                                                                 | Interpreted Need                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| A rover with riders in position ready to ride<br>must have no less than 12 inches (30.48 cm)<br>ground clearance.                                                                                  | All components in contact with the rider are at least 12 inches from the ground to its lowest point (seats, pedals, handles, etc.). |
| A U.S., national or institutional flag must be visible from the front, the side or the rear.                                                                                                       | The vehicle displays a U.S. national flag in the correct orientation.                                                               |
| Task materials must be unique to each rover<br>and have the team number marked on each<br>item. Task materials may not be shared with<br>other teams including those from the same<br>institution. | Task materials are clearly labeled and specified for each team.                                                                     |
| Teams will be awarded 1 point per task for<br>having the proper tools for each task that they<br>plan to attempt. Maximum total is 5 points.                                                       | The proper tool will be present for each respective task.                                                                           |
| Failure to provide robust, practical seat restraints prohibits course participation.                                                                                                               | The vehicle drivers are secure and safe during operation.                                                                           |
| All sharp edges and protrusions must be                                                                                                                                                            | The vehicle possesses rounded edges.                                                                                                |



| eliminated.                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specific personal protective equipment is<br>required prior to any team being allowed to<br>compete on the course. NOTE: All drivers<br>must wear a helmet the entire time they are<br>racing. There are no exceptions. Only<br>commercially manufactured protective<br>headgear is accepted.                                    | Vehicle drivers are provided eye-protection,<br>commercially available helmets, full-fingered<br>gloves, long sleeved shirts, pants, socks, and<br>closed-toed shoes.   |
| Each team will be required to develop a signal system between the two drivers to ensure hands are clear before proceeding.                                                                                                                                                                                                       | Vehicle drivers use an originally developed<br>communication system to ensure driver safety,<br>particularly regarding the position of their<br>hands during operation. |
| Teams should be strategic in choosing the obstacles and tasks to complete to maximize point value.                                                                                                                                                                                                                               | The vehicle addresses obstacles and tasks<br>stated in the NASA Human Exploration Rover<br>Challenge Guidebook.                                                         |
| Teams have a total of 8:00 minutes to<br>complete each excursion. The team must<br>return to home base or the finish line in 8:00<br>minutes or less to be eligible for competition<br>prizes. The event clock stops when the rover<br>crosses the finish line.                                                                  | The vehicle is capable of quick and agile maneuvers.                                                                                                                    |
| For the attempt to be considered successful<br>both drivers must be on the rover prior. An<br>attempt is deemed unsuccessful when the<br>rover veers off. Exception: If the obstacle is<br>associated with a task that requires the driver<br>to disembark will not be penalized for an<br>unsuccessful attempt of the obstacle. | Both drivers are in the vehicle during<br>approach and attempt at completing course<br>obstacles.                                                                       |
| Rovers that judges anticipate will affect the course time of another rover may be removed from the course at the judge's discretion.                                                                                                                                                                                             | Vehicle functions properly during operation.                                                                                                                            |
| Teams conducting one or more tasks will<br>demonstrate task collections and completions<br>for judging.                                                                                                                                                                                                                          | The drivers abide by the guidebook regarding task attempt and completion.                                                                                               |
| Propulsion System: Rovers must be human-<br>powered. Energy storage devices, such as                                                                                                                                                                                                                                             | Human input power will be the sole energy source for the rover.                                                                                                         |



|                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| springs, flywheels, batteries or others are not<br>allowed to be used as part of the drive train.                                                                                                                                                                                                                                                                                                                                        |                                                                                   |
| Rover performance: Teams should expect<br>their rover to be capable of traversing hills up<br>to 5 feet (~1.5 meter) high and path ways<br>inclined up to30 degrees in their direction of<br>travel and transverse to the direction of travel.<br>Wheels and drive trains should be designed<br>for both speed and the ability to perform on<br>the difficult terrain. A 15-foot(4.57meter) or<br>less turning radius is also necessary. | The vehicle can climb steep inclines and has a turning radius of 15 feet or less. |
| Vehicle Dynamics: For safety reasons, it is<br>recommended that the center of gravity of the<br>vehicle plus rover drivers be low enough to<br>safely handle slopes of 30 degrees front-to-<br>back and side-to-side.                                                                                                                                                                                                                    | The vehicle, containing riders, has a low and safe center of gravity.             |
| We encourage you to avoid using bike chains,<br>which have proven to be inadequate in past<br>races.                                                                                                                                                                                                                                                                                                                                     | The vehicle utilizes an innovative and effective drivetrain system.               |
| Each team is required to compete for the<br>Technology Challenge Award, which once<br>again concentrates on wheel design and<br>fabrication. Rover wheels will encounter hard<br>and regolith-like surfaces. Soft surfaces may<br>include sand and small pebbles. Hard surfaces<br>may include simulated rock outcroppings,<br>fissures or cracks up to 5 inches (~13 cm)<br>wide, and slopes up to 30 degrees                           | The wheel assembly is an original design.                                         |
| The only commercial items that may be used<br>in the fabrication of the rover wheels are the<br>hubs containing bearings or bushings. Strips<br>or other portions of commercial tires may not<br>be used on rovers competing in the Challenge.                                                                                                                                                                                           | The drivetrain allows riders to stand idle<br>while the wheels are spinning.      |
| Vehicles not constructed by the entering team<br>are not acceptable. Student teams are expected<br>to design, construct and test their own rovers.                                                                                                                                                                                                                                                                                       | The vehicle an original design.                                                   |
| Pushing the rover with a pole or other                                                                                                                                                                                                                                                                                                                                                                                                   | Propulsion of the vehicle is through                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                   |



| implement is not allowed. A driver's use of<br>his or her hands on the wheels (as with a<br>wheelchair) to rock or otherwise facilitate<br>moving the vehicle is permitted.                                                                                                                                                                                           | transmission of power to the wheels.                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| All tools associated with tasks that are on the<br>rover at the start of an excursion must be<br>carried on the rover throughout the excursion<br>except for the instrumentation package, which<br>is left at the task site, if that task is attempted.<br>This tool must remain on the rover throughout<br>the excursion if the associated task is not<br>attempted. | Task tools are stored on the vehicle during the entire excursion.       |
| All tasks and obstacles are attempted.                                                                                                                                                                                                                                                                                                                                | Vehicle can attempt every task and obstacle                             |
| A tasks and obstacles of similar events are completed for full points.                                                                                                                                                                                                                                                                                                | Vehicle can complete tasks.                                             |
| Innovative                                                                                                                                                                                                                                                                                                                                                            | Vehicle exhibits new and unique characteristics original to its design. |

From Table 1.2.1 above, a portion of the customer needs are requirements that need to be met to be eligible for competition participation. The majority of the customer needs have to do with point allocation and distribution amongst tasks and obstacles. Obstacles and tasks to be attempted will be discussed amongst team members along with the sponsors to ensure optimal point accumulation and objective preparedness. Each customer need that relates to competition eligibility will be met, along with every attempted task or obstacle will be attempted for maximum points.

The table puts engineering interpretations of needs established by the guidebook, sponsors, and advisors. The interpreted customer needs are significant in the future implementation of the functional decomposition. These interpretations are important because it bridges the gap between



what the customer wants versus what the product is going to do. Not all needs can reasonably be met, so a separation into engineering interpretations allows for more in-depth methods to highlight key features delivering the best product possible. These interpretations will also be utilized later in the concept generation and concept selection phases, as each need dictates an aspect of the rover design.

### **1.3 Functional Decomposition**

From the synthesized customer needs and a knowledge of preexisting human powered vehicles, the scope of what the rover needs to be able to perform can be determined. This scope is then decomposed into its systems and subsequent functions. The three major systems are the translational motion system, safety system, and stability system. The major systems are further decomposed and displayed in Figure 1.3.1 along with their accompanying functions.

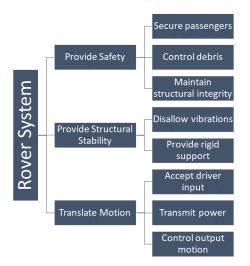



Figure 1.3.1 Device, System, Subsystem Functional Decomposition Flowchart



Providing safety, structural stability and translating motion are all major functions defined at the system level for what the rover must do, but each system can be further decomposed into what each respective function will do fundamentally. Figures 1.3.2, 1.3.3, and 1.3.4 display the system level functional decompositions and their subsequent decompositions.

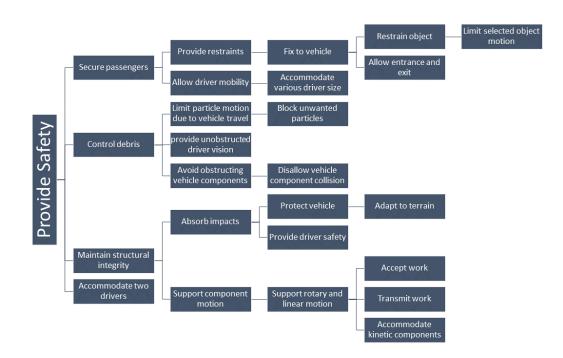



Figure 2.3.2 Provide safety System Functional Decomposition



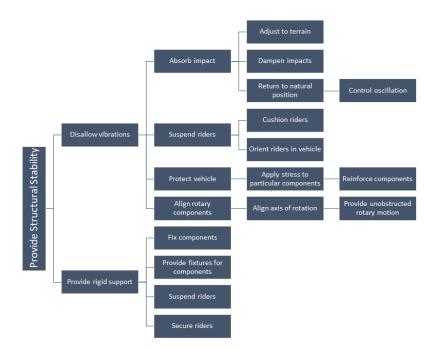



Figure 3.3.3 Provide Structural Stability Functional Decomposition Flowchart

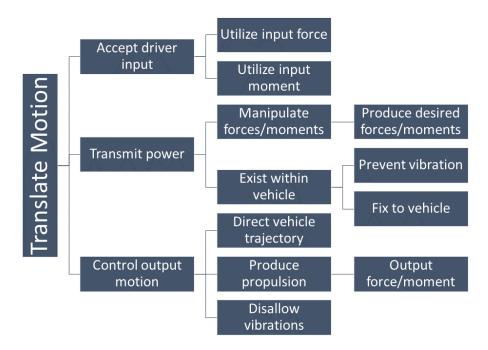



Figure 4.3.4 Translate Motion System Functional Decomposition Flowchart



Figure 1.3.5 displays the project functional decomposition; the system level functions and subsequent decomposed functions are compiled into a single chart and are displayed from top to bottom.

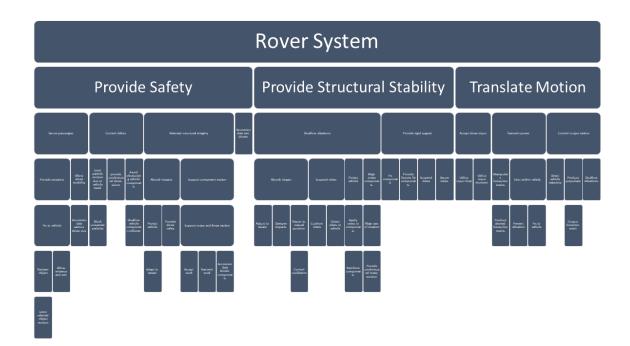


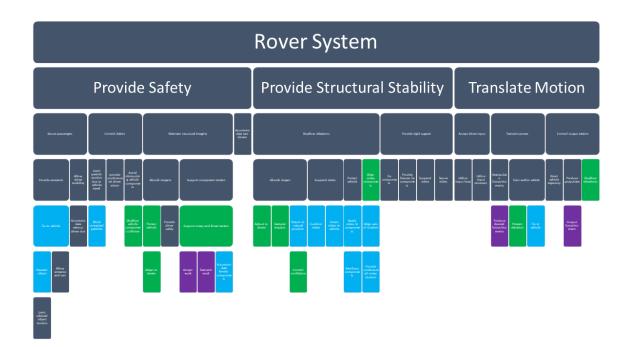

Figure 5.3.5 Complete Rover Functional Decomposition Flowchart

# **Explanation of Results**

Functions, decomposed to the fundamental physical description, aids the designer with fulfilling system requirements and producing innovative concepts. The functions at the system level, provide safety, provide structural stability, and translate motion, represent systems that will exist in the device level. Consequently, further decomposed functions at the subsystem and further levels, represent required outcomes at the system level which the function is describing.

10




### **Connection to Systems**

Systems can be prioritized; providing safety and providing structural stability are at highest priority because the respective system requirements are strictly according to competition rules. Our top systems can then be separated by our project goal of creating a human powered vehicle that follows the NASA Human Rover Exploration Challenge guidebook. Systems are prioritized by the presence of mission-critical functions, within their respective decompositions, and requirements established by competition rules. Resultantly, our priority, in respective order, is safety, structural stability, and translation of motion. The prioritization of systems will aid in designing an effective rover which fulfills fundamental functions while abiding by competition guidelines.

### **Smart Integration**

It was observed that functions at the most decomposed levels, first and second from the bottom, reoccurred within the three system level functions, provide safety, provide structural stability, translate motion. The following figures exhibits the recurring functions color coded to corresponding the recurring function groups; the recurring function groups are vibration control (green), structural (blue), power transmission (purple).





### Figure 6.3.6 Cross-Referenced Rover Functional Decomposition Flowchart

The respective color of the decomposed functions represent opportunity to accomplish several functions with a single designed component. Table 1.3.1 displays the function groups (columns) and the fundamental functions (rows); fundamental functions represent potential device systems; "provide safety" corresponding to a safety system, etc. Functions that reside in the same function group, vibration control, for example, are present across differing fundamental functions which presents opportunity to innovate and optimize. For example, functions within vibration control function group are present across the fundamental functions; a component may be designed to accomplish vibration control as well as satisfy the requirements for the fundamental function. This concept of functional cross sub-system relations will be utilized during concept generation and selection in order to produce an optimized device.

12



# Table 3.3.1Functional Cross Reference Table

|                              | Recurring Function Groups                                                                                                                                     |                                                                                                                                                                                                                                                             |                                                                                      |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                              | Vibration Control                                                                                                                                             | Structural                                                                                                                                                                                                                                                  | Power Transmission                                                                   |
| Provide Safety               | <ul> <li>Disallow vehicle<br/>component collision</li> <li>Protect Vehicle</li> <li>Adapt To Terrain</li> <li>Support rotary and linear<br/>motion</li> </ul> | <ul> <li>Fix to vehicle</li> <li>Restrain object</li> <li>Block unwanted particles</li> <li>Accommodate kinetic<br/>components</li> </ul>                                                                                                                   | <ul> <li>Accept Work</li> <li>Transmit work</li> </ul>                               |
| Provide Structural Stability | <ul> <li>Adjust to terrain</li> <li>Dampen impacts</li> <li>Control oscillations</li> <li>Align rotary components</li> </ul>                                  | <ul> <li>Return to natural position</li> <li>Cushion riders</li> <li>Orient riders in vehicles</li> <li>Apply stress to components</li> <li>Align axis of rotation</li> <li>Reinforce components</li> <li>Provide unobstructed<br/>rotary motion</li> </ul> |                                                                                      |
| Translate Motion             | <ul> <li>Prevent Vibration</li> <li>Disallow Vibrations</li> </ul>                                                                                            | Fix to object                                                                                                                                                                                                                                               | <ul> <li>Produce desired<br/>forces/moments</li> <li>Output force/moments</li> </ul> |

# Action and Outcome

Additionally, the fundamental functions of, provide safety, provide structural stability, and

translate motion can be generalized by describing the systems they represent. Table 1.3.2 displays

the fundamental functions and the expected outcome of the system that they represent.

Table 4.3.2Device Action and Outcome Table

| Function/System                  | Vibration Control                                                                                                            | Structural                                                                                                                              | Power Transmission                                                                                                            |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Expected Actions<br>and Outcomes | <ul> <li>Dampen<br/>impacts</li> <li>Control<br/>oscillations</li> <li>Maintain axis<br/>alignment for<br/>rotary</li> </ul> | <ul> <li>Suspend riders<br/>to required<br/>height</li> <li>Withstand<br/>deformation</li> <li>Secure and<br/>protect riders</li> </ul> | <ul> <li>Accept input<br/>forces/moments</li> <li>Manipulate<br/>forces/moments</li> <li>Output<br/>forces/moments</li> </ul> |



| components | • Accommodate kinetic vehicle components |  |
|------------|------------------------------------------|--|
|            | 1                                        |  |

The expectations, regarding functions and outputs, of the Rover are understood results of the figures and tables. The Rover must accomplish the three fundamental functions, provide safety, provide structural stability, and translate motion by ultimately fulfilling the most decomposed functions. In general, the rover must achieve the expected actions and outcomes displayed in table 1.3.2. The newfound understanding of functional requirements will be utilized in generating useful concepts and consequently selecting a concept for research and development.

### **1.4 Target Summary**

The functions are required of the rover in order to meet the project objective. Targets are assigned to each function and associated with a metric to provide a method for testing and validation. The targets presented in Table 1.4.1 were produced by interpreting the associated customer need and using the team's discretion to decide which point tier to attempt each obstacle/task at. Each concepts ability to accomplish the targets from Table 1.4.1 will assist the team in the concept selection phase as each target needs to be met in order to achieve the project objective.

### **Derivation of Targets**

Using the customer needs primarily derived from the NASA Human Exploration Rover Challenge 2020 Guidebook the targets could be formed. Each target is associated with a specific competition guideline or relates to the desired general performance specifications. There are certain mission-critical targets that will be elaborated on in the following section. The guidebook



outlines specific criteria in which both the team and the produced rover must adhere to in order to

compete in the competition.

Table 5.4.1Functional Targets and Metrics

| Function                                    | Metric                   | Target                                                   |
|---------------------------------------------|--------------------------|----------------------------------------------------------|
| Restrain Object                             | Amount of fixture points | 4-point restraints                                       |
| Limit selected object motion                | Mobility allowed         | Extremities                                              |
| Allow entrance and exit                     | Time                     | 20 seconds                                               |
| Allow driver mobility                       | Mobility allowed         | Extremities                                              |
| Accommodate various driver sizes            | Height, weight           | 5'0" to 6'4"<br>Maximum weight capacity<br>400 lbs total |
| Limit particle motion due to vehicle travel | Angle of protection      | 180 degrees                                              |
| Provide unobstructed driver vision          | Angle of vision          | 360 degrees                                              |
| Avoid obstructing vehicle components        | Clearance                | At least 1 inch                                          |
| Disallow vehicle component collision        | Clearance                | At least 1 inch                                          |
| Absorb impacts                              | Suspension travel        | 7 inches                                                 |
| Protect vehicle                             | Suspension travel        | 7 inches                                                 |



| Support rotary and linear  | Factor of safety               | n = 2                       |
|----------------------------|--------------------------------|-----------------------------|
| motion                     | Length of misalignment         | < 0.01 inches               |
| Accept work                | Type of input                  | Pedal power                 |
|                            |                                | Hydraulic braking           |
|                            |                                | Mechanical steering         |
| Transmit work              | Type of output                 | Torque to wheels            |
|                            |                                | Orientating steering system |
| Accommodate kinetic        | Types of bearing, gear,        | ANSI, AGMA, SAE standard    |
| components                 | sprocket, chain, etc. fitments | fits                        |
| Adjust to terrain          | Suspension Travel              | 7 inches                    |
| Dampen impacts             | Suspension type                | Coil spring & damper        |
| Return to natural position | Rider component height         | 14 inches                   |
| Control oscillation        | Suspension type                | Coil spring & damper        |
| Suspend riders             | Rider component height         | 14 inches                   |
| Cushion riders             | Rider approval                 | 100% approval               |
| Orient riders in vehicle   | Center of gravity              | Relatively low              |
| Apply stress to components | Type of suspension             | Long-travel, coil spring &  |
|                            |                                | damper                      |
| Reinforce components       | Factor of safety               | 2                           |
| Align rotary components    | Number of shaft supports       | 2                           |
| Align axis of rotation     | Length of misalignment         | < 0.01 inches               |



| Provide unobstructed rotary motion | Clearance                        | 1 inch                         |
|------------------------------------|----------------------------------|--------------------------------|
| Fix components                     | Factor of Safety                 | 2                              |
| Provide fixtures for components    | Type of fixing                   | Through bolt                   |
| Suspend riders                     | Rider Component height           | 14 inches                      |
| Secure riders                      | Number of restraint fixtures     | 4                              |
| Utilize input force                | Turning radius<br>Type of brakes | 15 foot<br>hydraulic           |
| Utilize input moment               | Type of transmission             | Variable torque                |
| Exist within vehicle               | Type of transmission             | Concealed, recessed components |
| Prevent vibration                  | Length of misalignment           | < 0.01 inches                  |
| Fix to vehicle                     | Type of mate                     | Weld, through bolt             |
| Direct vehicle trajectory          | Turning radius                   | 15 feet                        |
| Produce propulsion                 | Type of transmission             | Variable torque                |

Table 6.4.2Additional Targets and Metrics



| Metric                   | Target           |
|--------------------------|------------------|
| Unloaded Weight          | 200 lbs.         |
| Drivetrain Torque ratio  | Variable         |
| Total Cost of Vehicle    | < \$2000         |
| Unassembled cubic volume | 48 square inches |

# **Critical Targets and Validation**

Targets that must be fulfilled in order to compete along with other targets that heavily impact overall design are considered to be mission-critical. These targets will have the greatest affect during concept selection phase of our project process. Table 1.4.3 displays these missioncritical targets, along with the validation method and the necessary resources required.

Table 7.4.3 Mission-Critical Targets

| Target                                                                            | Validation                                                                          | Tools Necessary                                        |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------|
| Driver mobility limited to the extremities                                        | Having the driving physical<br>sit in the seat and adjust<br>restraints accordingly | Measuring equipment and the assembled restraint system |
| 5'0" to 6'4" Height<br>accommodation<br>Maximum weight capacity<br>400 lbs. total | Take measurements of<br>individuals and test through<br>3D modeling                 | Measuring equipment and 3D modeling software           |
| Pedal power                                                                       | Physical tests:                                                                     | For a physical test, we need                           |



| Hydraulic braking<br>Mechanical steering        | I.e. normal brake testing<br>(pedaling to a certain speed<br>and breaking, then measuring<br>the distance)                                | the built components of the<br>HPV. Also, 3D modeling<br>software to test design before<br>the build. |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Torque to wheels<br>Orientating steering system | 3D modeling and physical test once the vehicle is built.                                                                                  | 3D modeling software and<br>physical components.<br>Measuring equipment for<br>torque test.           |
| 14-inch rider-related<br>component clearance    | Test through measurement<br>and 3D modeling. We'll<br>design to make suspension<br>adjustable to enable<br>additional height adjustments. | 3D modeling software and measuring equipment                                                          |
| 15 foot turning radius                          | Test through measurement of<br>turning radius. Design to the<br>specific turning radius and<br>additional checking through<br>3D modeling | 3D modeling software and measuring equipment                                                          |

### **Measurements and Confirmation**

Targets will primarily be verified through rover system design, modeling, prototyping, and road testing. With many of the targets being geometric requirements (e.g. height, length, width) the use of 3D CAD software will be useful in ensuring targets are met considering the geometry of the rover. For example, clearance of moving parts within the device will be confirmed using 3D modeling before manufacturing which ultimately saves time and money.



Additionally, many of the targets specify desired components; these targets will be satisfied by designing and accommodating components which fulfil system functions which the target quantifies. Computations will also be made during validation, for example, rider related component height of 14 inches. The compression of suspension and other deflection must be considered as well as the weight of the riders. Mission-critical targets such as rider related component height will be heavily considered in design, computations, and testing in order to satisfy requirements and fulfil the aspired targets.

### **1.5 Concept Generation**

#### **Generation Methods**

#### The Morphological Chart

The team found that the morphological chart was the most effective method of generating concepts for this project since most of the design is guided and regulated by the competition guidebook. This does not necessarily mean that the components cannot be innovative; however, certain systems are expected or required to be present. The following table represents the morphological chart; a concept or multiples are selected from each column respectively. Table 1.5.2 displays an example of a generated concept from the morphological chart. A rover utilizing coil springs and damper suspension, mechanical steering, chain and gearbox driven drivetrain, and foam core, treaded wheels is exemplified in this table.

Table 8.5.1Morphological Chart

| Suspension Steering | g Drivetrain | Wheels |
|---------------------|--------------|--------|
|---------------------|--------------|--------|

20



| <ul> <li>Linkage</li> <li>Coil Spring/</li></ul>                                             | <ul> <li>Hydraulic</li> <li>Rear</li> <li>Front</li> <li>Mechanica 1</li> <li>Cable</li> </ul> | <ul> <li>Chain Drive</li> <li>Differential</li> <li>CVT</li> <li>Shaft Driven</li> <li>Linkage</li> <li>Gearbox</li> <li>Single or</li></ul> | <ul> <li>Integrated Spring/</li></ul>                           |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Dampener <li>Leaf Springs</li> <li>Independent</li> <li>Rigid</li> <li>Wheel Integrated</li> |                                                                                                | Double Input <li>Tracks</li>                                                                                                                 | Dampener <li>Pneumatic</li> <li>Treaded</li> <li>Foam Core</li> |

# Table 9.5.2Generated Concept Example

| Suspension                                                                                    | Steering                                                                                      | Drivetrain                                                                                                                                   | Wheels                                                           |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| <ul> <li>Linkage</li> <li>Coil Spring</li></ul>                                               | <ul> <li>Hydraulic</li> <li>Rear</li> <li>Front</li> <li>Mechanical</li> <li>Cable</li> </ul> | <ul> <li>Chain Drive</li> <li>Differential</li> <li>CVT</li> <li>Shaft Driven</li> <li>Linkage</li> <li>Gearbox</li> <li>Single or</li></ul> | <ul> <li>Integrated Spring</li></ul>                             |
| /Dampener <li>Leaf Springs</li> <li>Independent</li> <li>Rigid</li> <li>Wheel Integrated</li> |                                                                                               | Double Input <li>Tracks</li>                                                                                                                 | /dampener <li>Pneumatic</li> <li>Treaded</li> <li>Foam Core</li> |

# Brainstorming

In addition to the morphological chart, many concepts were also gathered during team brainstorming sessions. The team would bounce ideas off one another and the concepts were built upon them. During this process any idea that was proposed was written down and collected regardless of the practicality of the idea. The sessions also featured ideas around the SCAMPER

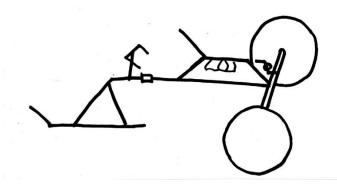
(Substitute. Combine. Adapt. Modify. Put to other use. Eliminate. Rearrange) technique.



### Random Input Technique

The random input technique was used in conjunction with brainstorming to generate some additional ideas. Some of the concepts from brainstorming spurred related concepts with keywords in their description. AN example of this would be the ski wheel concept that was generated once the idea of a sled was introduced.

### **Biomimicry**


The team also used the biomimicry technique, which is a method of looking to nature and natural phenomenon to generate concept ideas. When deriving concepts for the rover wheels the team looked at the pangolin which can roll itself into a ball. The team also looked toward the pelican to generate concepts for the sample collection tasks. The pelican was used because of its ability to scoop water and fish into its bill quickly and efficiently which gave way to the idea of the Cap n' Go listed in Table E1 of the generated concepts list.

### **Medium Fidelity Concepts**

# Ski-Prone Pilot

The Ski-Prone Pilot design was formed from brainstorming and the use of the morphological chart. The front wheels of the rover are replaced with a pair of skis resembling that of a snowmobile. The rider that steers lies prone, held in place by a harness secured to the bottom of the second riders' seat.





# Figure 7.5.1 Ski-Prone Pilot Concept Rendering

# **Built-In Tire Suspension**

The Built-In tire suspension design came as a result of the morphological chart. The tire has a segmented rim with independent spoke suspension. The suspension of the wheel is jointed to allow for compression with a spring dampener in between the linkages in order to absorb some of the energy from bumps and shocks.

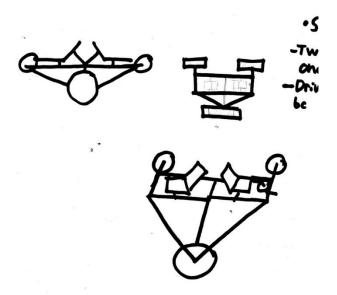
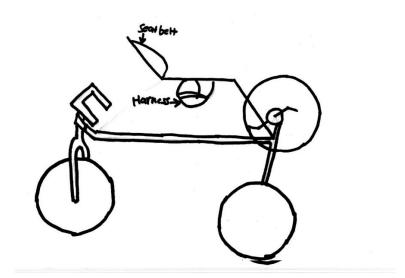




Figure 8.5.2 Built-In Tire Suspension Concept Rendering



### Sideways Trike

The Sideways Trike design was derived from the morphological chart and brainstorming. This design has the riders back-to-back and allows for single or dual input. The two wheels on one side of rover provides stability while the single wheel on the opposite side allows for maneuverability with a significant weight reduction.




# Figure 9.5.3 Sideways Trike Concept Rendering

# Prone Pilot Tricycle

The Prone Pilot Tricycle design is derived from brainstorming, by adapting the tricycle known from many people's childhood, to allow for one rider to be lying prone and secured in place with a harness while the second rider provides power to the rear axle.





## Figure 10.5.4 Prone Pilot Tricycle Concept Rendering

## Diamond Rover

The Diamond Rover design is a unique four-wheeled rover layout derived from the use of the morphological chart. The Diamond Rover uses a rigid bi-wheel fork to controls the front wheel for steering. The rear wheel provides both support and act as a method for even weight distribution for traversing on softer terrain. Adaptable for dual or single driver input.

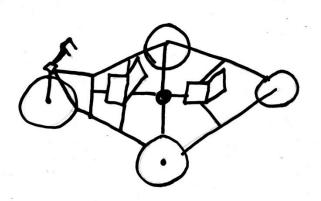



Figure 11.5.5 Diamond Rover Concept Rendering



## **High Fidelity Concepts**

## Rigid Bi-Wheel Fork

The Rigid Bi-Wheel Fork design accepts an input from a four-bar crank-rocker steering system. The Rigid fork will not contain any suspension elements. The bearing block is fixed to the chassis of the rover, as the fork is intended for use with larger wheels to compensate for the lack of a suspension system.

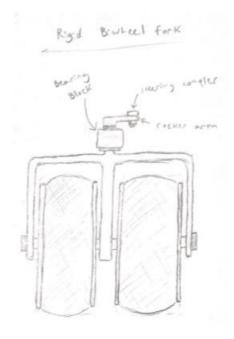
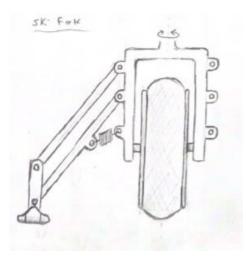




Figure 12.5.6 Rigid Bi-Wheel Fork Concept Rendering

## <u>Ski-Fork</u>

The Ski-Fork design utilizes two skis along each side of the central wheel. Only one ski is illustrated in Figure 1.5.7 below. The skis are used to stabilize the vehicle and assist with the vehicles ability to steer and orient itself.





## Figure 13.5.7 Ski-Fork Concept Rendering

#### Single Input Driver Layout

The Single Input Driver Layout design has one of the rover drivers providing propulsion through the pedals. The other driver is slightly elevated in the rear of the rover steering. This system allows for a simpler drivetrain but would see a smaller magnitude or propulsion energy generated.

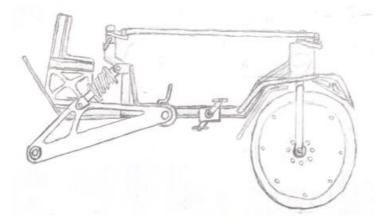
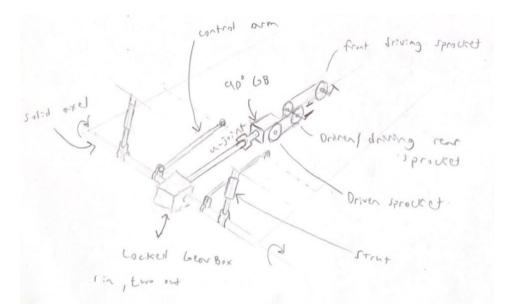



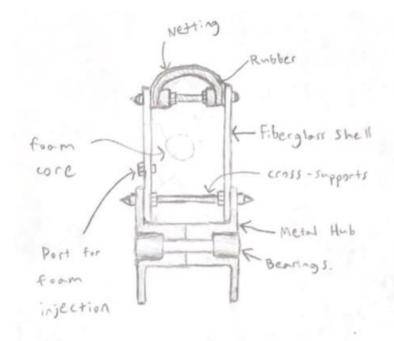

Figure 14.5.8 Single Input Driver Layout Concept Rendering



#### Solid-Axle Double-Input Drivetrain

The Solid-Axle Double-Input Drivetrain design utilizes chain drives for driver input. There will be no torque manipulation, shifting of gears, from sprocket to sprocket to avoid the chance of chain derailment. The suspended portions of the drivetrain will not include the chain-driven parts in order to prevent the potential failure of the system. The final sprocket will drive a 90-degree gearbox that drives a universal joint. The U-joint will allows for rear suspension of the solid axle. The U-joint will be coupled with another shaft that feeds a single-input, double-output, locked gearbox. The gearbox then ultimately providing torque to the wheels. Struts and control arms will be jointed to the axle supporting suspension travel.



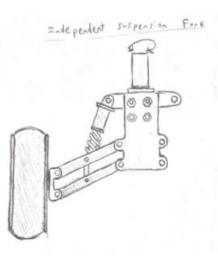

## Figure 15.5.9 Solid-Axle Double-Input Drivetrain Concept Rendering

#### Foam Core Wheel

The Foam Core Wheel design features a metal hub, containing bearings, a fiberglass shell, rubber treads, and an injected foam core for structural support. The wheel is not pneumatic, and



materials will be designed to withstand various impacts and weather conditions. The illustration shown in Figure 1.5.10 shows the top half of a cross-section of the proposed wheel.

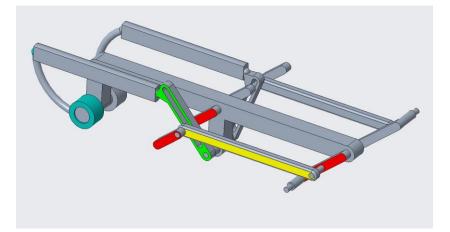



## Figure 16.5.10 Foam Core Wheel Concept Rendering

#### Independent Suspension Fork

The Independent Suspension Fork design has a front suspension fork which accepts input from a four-bar crank-rocker steering system. The fork allows for a small turning radius which is required from the guidebook, as well as having vibration and impact dampening abilities. The travel height of the rover will be designed and optimized to accommodate for the competition minimum clearance height requirements.






#### Figure 17.5.11 Independent Suspension Fork Concept Rendering

#### Linkage Drivetrain

The linkage drivetrain design avoids the usage of chain drives, shafts, couplers, and other components that have historically failed during the competition. Figure 1.5.12 shows a 3D CAD model of the proposed concept. The cranks accept pedaling power from both riders and are shown in red. The two cranks are coupled on each side to form a four-bar double crank mechanism. The rear crank has a joint which slide into a slot in the rocking arm and is colored green. This rocking arm is then joined to another rocking arm which transmits torque to a ratcheting hub; the hub is colored teal. Friction and structural integrity are a large concern for this mechanism design. There will be dynamic and structural analysis conducted to mitigate possible risks.





## Figure 18.5.12 Linkage Drivetrain Concept Rendering

## Custom Variable Viewfinder

The custom variable viewfinder design is a simple design allowing for quick changing of the filters in front of the camera lens. The mechanism will attach itself with some sort of adhesive to the camera and will contain 3 filters, one red, one blue, and one yellow. These filters will be able to pivot around the point that is attached to the camera. Similar to an eye exam machine with the differing lens swapping in front of the viewfinder.

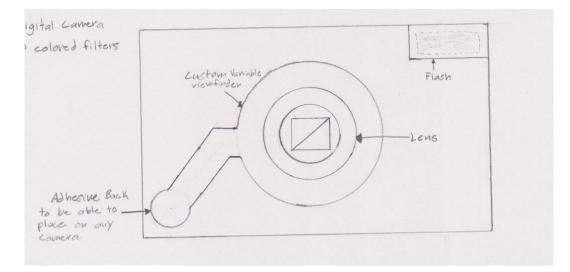
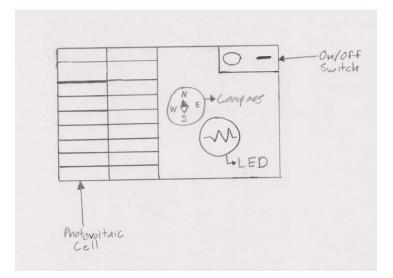




Figure 19.5.13 Custom Variable Viewfinder Concept Rendering



### Deployable Solar Cell

The deployable Solar Cell design is a relatively simple circuit housed in a case with a transparent bottom for competition purposes. The majority of the housing units' surface will be taken up by a phototactic cell maximizing the amount of potential power generation for the form factor. The design will also be compact so that the rover drivers are able to store the instrument on their person. An illustration of the proposed concept is depicted in Figure 1.5.14



## Figure 20.5.14 Deployable Solar Cell Concept Rendering

## **1.6 Concept Selection**

#### **Binary Comparison**

The mission critical customer requirements set forth by the NASA 2020 Human Exploration Rover Guidebook and those derived by the team were analyzed using a binary comparison table shown in Table 1.6.1. The table produces a hierarchy of importance amongst the customer requirements relative to one another. This hierarchy which provides a weight factor, is later used in numerically analyzing the merits of the generated concepts.

Team 514



Table 10.6.1Binary Comparison Table

|                       |   |   |   |   | - |   | - |   |   |    |       |
|-----------------------|---|---|---|---|---|---|---|---|---|----|-------|
|                       | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total |
| 1.Machinability       | - | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0  | 2     |
| 2.Innovative          | 1 | - | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0  | 3     |
| 3.Cost<br>Effective   | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 1 | 0  | 1     |
| 4.Simplicity          | 1 | 1 | 1 | - | 0 | 0 | 1 | 1 | 1 | 0  | 6     |
| 5.Reliability         | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1  | 9     |
| 6.Assembly            | 1 | 1 | 1 | 1 | 0 | - | 1 | 0 | 1 | 0  | 6     |
| 7.Impact<br>Dampening | 1 | 1 | 1 | 0 | 0 | 0 | - | 0 | 1 | 0  | 4     |
| 8.Control             | 1 | 1 | 1 | 0 | 0 | 1 | 1 | - | 1 | 1  | 7     |
| 9.Required<br>Input   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0  | 0     |
| 10.safety             | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | -  | 7     |
| Total                 | 7 | 6 | 8 | 3 | 0 | 3 | 5 | 2 | 9 | 2  |       |



## House of Quality

The House of Quality (HoQ) determines how certain engineering characteristics of the rover system design satisfy the customer needs. The relative weights and the ranked order of the engineering characteristics come as a result of the HoQ which assists in comparing concepts to one another to ultimately reveal which concepts best satisfy the stated customer needs.

Table 11.6.2 *House of Quality* 

|                          |                             |                     | Engineering Characteristics     |                 |                 |                             |                   |                    |
|--------------------------|-----------------------------|---------------------|---------------------------------|-----------------|-----------------|-----------------------------|-------------------|--------------------|
| Improvement direction    |                             | 1                   | 1                               | ↓               | <b>↑</b>        | <b>↑</b>                    | ↓                 | <b>↑</b>           |
| Units                    |                             | # of<br>extremities | in                              | in*lbf          | in*lbf,<br>lbf  | in                          | in                |                    |
| Customer<br>Requirements | Importance<br>weight factor | Driver<br>Mobility  | Rider size<br>accommodat<br>ion | Driver<br>Input | Rover<br>Output | Rider<br>position<br>height | Turning<br>Radius | Rover<br>Stability |
| Control                  | 7                           | 8                   | 4                               | 8               | 8               | 4                           | 8                 | 8                  |
| Reliability              | 9                           | 4                   | 0                               | 4               | 4               | 2                           | 4                 | 8                  |
| Simplicity               | 6                           | 1                   | 0                               | 4               | 4               | 0                           | 1                 | 4                  |
| Impact<br>Dampening      | 4                           | 0                   | 0                               | 2               | 8               | 0                           | 0                 | 8                  |
| Assembly                 | 6                           | 0                   | 1                               | 8               | 4               | 1                           | 2                 | 2                  |
| Innovative               | 3                           | 2                   | 0                               | 8               | 4               | 0                           | 1                 | 4                  |
| Cost effective           | 1                           | 2                   | 0                               | 8               | 8               | 0                           | 0                 | 4                  |
| Safety                   | 7                           | 8                   | 8                               | 4               | 4               | 8                           | 4                 | 8                  |



| Machinability  | 2     | 0    | 2   | 8    | 4    | 0   | 0    | 2    |
|----------------|-------|------|-----|------|------|-----|------|------|
| Raw score (125 | 53)   | 162  | 94  | 248  | 228  | 108 | 141  | 272  |
| Relative Weigh | t (%) | 12.9 | 7.5 | 19.8 | 18.2 | 8.6 | 11.3 | 21.7 |
| Rank Order     |       | 4    | 7   | 2    | 3    | 6   | 5    | 1    |

### Pugh Charts

Pugh chart comparisons were used to analyze concepts of similar systems. The four systems that were analyzed are the front suspension, wheel design, driver layout, and drivetrain. Multiple iterations were conducted on each of the various systems until a concept was proven to better satisfy customer needs than the others. For example, if a concept was proven to be the best during subsequent analyses it would be deemed the best concept to satisfy the customer needs. This analysis was performed for all four systems to be used further in determining which concepts will move to greater stages of development.

The Pugh Chart shown in Table 1.6.3 below compares the concepts for the front suspension to the datum concept of the Rockshox Recon Suspension Fork. The concepts that are determined to be worse than the datum is denoted by minuses (-), concepts determined to be better than the datum are denoted by pluses (+), and those that are equivalent to the datum are denoted by an S. The Independent Suspension Fork has the fewest minuses with 1 and the greatest number of pluses with 3, which sets it up to be the datum chosen in the subsequent Pugh chart regarding the front suspension.



Table 12.6.3 Front Suspension Pugh I

|                             | Front Suspension   |                                   |          |                         |                             |  |  |
|-----------------------------|--------------------|-----------------------------------|----------|-------------------------|-----------------------------|--|--|
|                             |                    |                                   | Concepts |                         |                             |  |  |
| Selection Criteria          | Datum              | Independent<br>Suspension<br>fork | Ski Fork | Rigid Bi-<br>Wheel Fork | Independent<br>Linkage Fork |  |  |
| Rover Stability             | Rockshox<br>recon  | +                                 | +        | +                       | +                           |  |  |
| Driver Input                | suspension<br>fork | -                                 | -        | -                       | -                           |  |  |
| Rover Output                | a                  | +                                 | -        | -                       | -                           |  |  |
| Driver Mobility             |                    | S                                 | S        | -                       | +                           |  |  |
| Turning Radius              |                    | +                                 | S        | S                       | -                           |  |  |
| Rider position<br>height    |                    | S                                 | S        | S                       | S                           |  |  |
| Rider Size<br>Accommodation |                    | S                                 | S        | S                       | S                           |  |  |
| # pluses                    |                    | 3                                 | 1        | 1                       | 2                           |  |  |
| # minuses                   |                    | 1                                 | 2        | 3                       | 3                           |  |  |

The Pugh Chart in Table 1.6.4 is the second chart for the front suspension. The concepts are compared to the datum established in the Table 1.6.3. The Independent Linkage Fork has the greatest number of pluses with 1 and is tied for the least number of minuses with 3.



Table 13.6.4Front Suspension Pugh II

|                             | Front Suspension          |          |                         |                             |  |  |  |  |
|-----------------------------|---------------------------|----------|-------------------------|-----------------------------|--|--|--|--|
|                             |                           | Cond     | cepts                   |                             |  |  |  |  |
| Selection Criteria          | Datum                     | Ski Fork | Rigid Bi-<br>Wheel Fork | Independent<br>Linkage Fork |  |  |  |  |
| Rover Stability             | Independent<br>Suspension | -        | -                       | +                           |  |  |  |  |
| Driver Input                | fork                      | -        | -                       | -                           |  |  |  |  |
| Rover Output                |                           | -        | -                       | -                           |  |  |  |  |
| Driver Mobility             |                           | S        | -                       | S                           |  |  |  |  |
| Turning Radius              |                           | S        | S                       | -                           |  |  |  |  |
| Rider position<br>height    |                           | S        | S                       | S                           |  |  |  |  |
| Rider Size<br>Accommodation |                           | S        | S                       | S                           |  |  |  |  |
| # pluses                    |                           | 0        | 0                       | 1                           |  |  |  |  |
| # minuses                   |                           | 3        | 4                       | 3                           |  |  |  |  |

The Pugh Chart in Table 1.6.5 below compares the concepts for the Wheel Designs to the datum concept the Tubed, Schrader valve, Pneumatic bicycle wheel. The concept chosen to be the new datum for the next Pugh chart is the Foam core wheel as it has the fewest number of minuses with 0.



Table 14.6.5 *Wheel Design Pugh I* 

|                             | Wheels                               |                    |                                   |             |                     |  |  |  |
|-----------------------------|--------------------------------------|--------------------|-----------------------------------|-------------|---------------------|--|--|--|
|                             |                                      | Concepts           |                                   |             |                     |  |  |  |
| Selection Criteria          | Datum                                | Foam Core<br>Wheel | Integrated<br>Suspension<br>Wheel | Rigid Wheel | Full Metal<br>Wheel |  |  |  |
| Rover Stability             | Tubed,<br>Schrader                   | S                  | -                                 | S           | S                   |  |  |  |
| Driver Input                | valve,<br>Pneumatic<br>bicycle wheel | S                  | -                                 | S           | S                   |  |  |  |
| Rover Output                |                                      | S                  | +                                 | -           | -                   |  |  |  |
| Driver Mobility             |                                      | S                  | S                                 | S           | S                   |  |  |  |
| Turning Radius              |                                      | S                  | S                                 | S           | S                   |  |  |  |
| Rider position<br>height    |                                      | S                  | S                                 | S           | S                   |  |  |  |
| Rider Size<br>Accommodation |                                      | S                  | S                                 | S           | S                   |  |  |  |
| # of pluses                 |                                      | 0                  | 1                                 | 0           | 0                   |  |  |  |
| # of minus                  |                                      | 0                  | 2                                 | 1           | 1                   |  |  |  |

The datum for the Pugh Chart in Table 1.6.6 below was determined from the previous chart and is compared to the remaining concepts. The Pugh Chart reveals that the Rigid Wheel should be chosen as the new datum and was evaluated using the same methods as the previous Pugh Chart.



Table 15.6.6 Wheel Design Pugh II

|                             | Wheels             |                                   |             |                  |  |  |  |  |
|-----------------------------|--------------------|-----------------------------------|-------------|------------------|--|--|--|--|
|                             |                    | Cor                               | ncepts      |                  |  |  |  |  |
| Selection Criteria          | Datum              | Integrated<br>Suspension<br>Wheel | Rigid Wheel | Full Metal Wheel |  |  |  |  |
| Rover Stability             | Foam Core<br>Wheel | -                                 | S           | S                |  |  |  |  |
| Driver Input                |                    | -                                 | -           | -                |  |  |  |  |
| Rover Output                |                    | -                                 | -           | -                |  |  |  |  |
| Driver Mobility             |                    | S                                 | S           | S                |  |  |  |  |
| Turning Radius              |                    | S                                 | S           | S                |  |  |  |  |
| Rider position<br>height    |                    | S                                 | S           | S                |  |  |  |  |
| Rider Size<br>Accommodation |                    | S                                 | S           | S                |  |  |  |  |
| # of pluses                 |                    | 0                                 | 0           | 0                |  |  |  |  |
| # of minus                  |                    | 3                                 | 2           | 2                |  |  |  |  |

The wheel concept chosen in the Pugh Chart from Table 1.6.6 is used as the new datum for the Pugh chart in Table 1.6.7. Based off the Pugh chart in Table 1.6.7 below the Foam Core Wheel has the fewest minuses with 0 and the greatest number of pluses with 2.



Table 16.6.7 Wheels Pugh III

|                             | Wheels      |                                   |                    |                  |  |  |  |  |
|-----------------------------|-------------|-----------------------------------|--------------------|------------------|--|--|--|--|
|                             |             | Cor                               | ncepts             |                  |  |  |  |  |
| Selection Criteria          | Datum       | Integrated<br>Suspension<br>Wheel | Foam Core<br>Wheel | Full Metal Wheel |  |  |  |  |
| Rover Stability             | Rigid Wheel | -                                 | +                  | -                |  |  |  |  |
| Driver Input                |             | -                                 | S                  | -                |  |  |  |  |
| Rover Output                |             | -                                 | +                  | -                |  |  |  |  |
| Driver Mobility             |             | S                                 | S                  | S                |  |  |  |  |
| Turning Radius              |             | S                                 | S                  | S                |  |  |  |  |
| Rider position height       |             | S                                 | S                  | S                |  |  |  |  |
| Rider Size<br>Accommodation |             | S                                 | S                  | S                |  |  |  |  |
| # of pluses                 |             | 0                                 | 2                  | 0                |  |  |  |  |
| # of minus                  |             | 3                                 | 0                  | 3                |  |  |  |  |

The Pugh Chart in Table 1.6.8 below compares the concepts for the Driver Layout to the datum concept the Front-to-Back, Tandem Style. Though the Back to Back concept has the fewest minuses with 0 and has the greatest number of pluses with 2, the Side by Side concept is used as the datum for the next Pugh chart.



Table 17.6.8 Driver Layout Pugh I

|                             | Driver Layout                  |                                      |              |                 |                                |  |  |  |
|-----------------------------|--------------------------------|--------------------------------------|--------------|-----------------|--------------------------------|--|--|--|
|                             |                                | Concepts                             |              |                 |                                |  |  |  |
| Selection Criteria          | Datum                          | Variable<br>height, front<br>to back | Side by side | Back to<br>Back | Rear<br>Steering,<br>One Input |  |  |  |
| Rover Stability             | Front to Back,<br>Tandem Style | S                                    | S            | S               | S                              |  |  |  |
| Driver Input                | TT                             | S                                    | -            | S               | +                              |  |  |  |
| Rover Output                |                                | S                                    | S            | S               | -                              |  |  |  |
| Driver Mobility             |                                | S                                    | S            | S               | S                              |  |  |  |
| Turning Radius              |                                | +                                    | +            | +               | S                              |  |  |  |
| Rider position<br>height    |                                | S                                    | +            | +               | S                              |  |  |  |
| Rider Size<br>Accommodation |                                | S                                    | S            | S               | S                              |  |  |  |
| # of pluses                 |                                | 1                                    | 2            | 2               | 1                              |  |  |  |
| # of minus                  |                                | 0                                    | 1            | 0               | 2                              |  |  |  |

The chart in Table 1.6.9 is the second Pugh Chart for driver layout. The datum chosen in the previous Pugh Chart is compared to the remaining concepts. The concept with the greatest number of pluses is the Variable height, front to back with 2.



Table 18.6.9 Driver Layout Pugh II

|                             | Driver Layout |                                   |              |                             |  |  |  |
|-----------------------------|---------------|-----------------------------------|--------------|-----------------------------|--|--|--|
|                             |               | Cor                               | ncepts       |                             |  |  |  |
| Selection Criteria          | Datum         | Variable height,<br>front to back | Back to Back | Rear Steering,<br>One Input |  |  |  |
| Rover Stability             | Side by side  | -                                 | S            | -                           |  |  |  |
| Driver Input                |               | +                                 | +            | -                           |  |  |  |
| Rover Output                |               | +                                 | S            | -                           |  |  |  |
| Driver Mobility             |               | S                                 | S            | +                           |  |  |  |
| Turning Radius              |               | -                                 | S            | S                           |  |  |  |
| Rider position<br>height    |               | S                                 | S            | S                           |  |  |  |
| Rider Size<br>Accommodation |               | S                                 | S            | S                           |  |  |  |
| # of pluses                 |               | 2                                 | 1            | 1                           |  |  |  |
| # of minus                  |               | 2                                 | 0            | 3                           |  |  |  |

The Pugh Chart in Table 1.6.10 is for the Drivetrain concepts. The datum that was chosen is the Rigid Tandem, chain driven drivetrain and it is compared to the remaining concepts. The Linkage Drivetrain is the chosen to be the new datum for the next chart with the fewest number of minuses.



## Table 19.6.10 Drivetrain Pugh I

|                             | Drivetrain                 |                       |                                          |                                                              |                                          |  |  |  |  |
|-----------------------------|----------------------------|-----------------------|------------------------------------------|--------------------------------------------------------------|------------------------------------------|--|--|--|--|
|                             |                            | Concepts              |                                          |                                                              |                                          |  |  |  |  |
| Selection Criteria          | Datum                      | Linkage<br>Drivetrain | Solid-Axle<br>Double-Input<br>Drivetrain | Chain Ring<br>Legs with<br>Pedal Driven<br>Gearbox<br>System | Directly Driven<br>Shaft (Pedal<br>Boat) |  |  |  |  |
| Rover Stability             | Rigid<br>Tandem,           | +                     | +                                        | +                                                            | -                                        |  |  |  |  |
| Driver Input                | chain driven<br>drivetrain | S                     | S                                        | S                                                            | -                                        |  |  |  |  |
| Rover Output                |                            | +                     | +                                        | +                                                            | -                                        |  |  |  |  |
| Driver Mobility             |                            | S                     | S                                        | S                                                            | -                                        |  |  |  |  |
| Turning Radius              |                            | S                     | S                                        | S                                                            | S                                        |  |  |  |  |
| Rider position height       |                            | S                     | S                                        | S                                                            | S                                        |  |  |  |  |
| Rider Size<br>Accommodation |                            | S                     | S                                        | S                                                            | S                                        |  |  |  |  |
| # of pluses                 |                            | 0                     | 0                                        | 0                                                            | 0                                        |  |  |  |  |
| # of minus                  |                            | 2                     | 2                                        | 2                                                            | 4                                        |  |  |  |  |

## Analytical Hierarchy Process (AHP)

An Analytical Hierarchy Process was conducted to compare concepts of similar systems in a non-binary manor to be used in determining which concepts best satisfy our customer needs.



The concepts were compared to one another and their relationship is then normalized to numerically determine which concept best satisfies our customer needs.

Table 20.6.11 Front Suspension AHP

| Front Suspension                     |                                |          |                        |                             |  |  |
|--------------------------------------|--------------------------------|----------|------------------------|-----------------------------|--|--|
|                                      | Independent<br>Suspension Fork | Ski Fork | Rigid Bi-Wheel<br>Fork | Independent<br>Linkage Fork |  |  |
| Independent<br>Suspension Fork       | 1                              | 3        | 2                      | 2                           |  |  |
| Ski Fork                             | .33                            | 1        | .5                     | .33                         |  |  |
| Rigid Bi-Wheel<br>Fork               | .5                             | 2        | 1                      | .5                          |  |  |
| Independent<br>Linkage<br>Suspension | .5                             | 3        | 2                      | 1                           |  |  |
| Sum                                  | 2.33                           | 9        | 5.5                    | 3.83                        |  |  |

# Table 21.6.12Front Suspension Normalization

| Normalized Front Suspension                                                            |     |     |     |     |     |
|----------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|
| Independent<br>Suspension<br>Fork Ski Fork Rigid Bi-<br>Wheel Fork Linkage Fork Weight |     |     |     |     |     |
| Independent<br>Suspension<br>Fork                                                      | .43 | .33 | .36 | .52 | .41 |
| Ski Fork                                                                               | .14 | .11 | .09 | .09 | .11 |
| Rigid Bi-<br>Wheel Fork                                                                | .21 | .22 | .18 | .13 | .19 |



| Independent<br>Linkage<br>Suspension | .21 | .33 | .36 | .26 | .29 |
|--------------------------------------|-----|-----|-----|-----|-----|
| Sum                                  | 1   | 1   | 1   | 1   | 1   |

The Front Suspension Normalization table in Table 1.6.12 revealed that the independent suspension fork would satisfy our customer needs best as it yields the greatest normalization value.

This analysis was conducted for all four of the rover systems.

Table 22.6.13Front Suspension Consistency Check

| Front Suspension Consistency Check |                      |                                      |                                        |  |  |
|------------------------------------|----------------------|--------------------------------------|----------------------------------------|--|--|
|                                    | Criteria Weights {W} | Weighted Sum Vector<br>{Ws} = [C]{W} | Consistency Vector<br>Cons = {Ws}./{W} |  |  |
| Independent<br>Suspension Fork     | 0.41                 | 1.990                                | 4.854                                  |  |  |
| Ski Fork                           | 0.11                 | 0.436                                | 3.964                                  |  |  |
| Rigid Bi-Wheel Fork                | 0.19                 | 0.760                                | 4.000                                  |  |  |
| Independent Linkage<br>Suspension  | 0.29                 | 1.205                                | 4.155                                  |  |  |

Table 23.6.14

Г

Front Suspension Consistency Comparison

| Front Suspension Consistent Comparison |   |                         |                         |  |  |
|----------------------------------------|---|-------------------------|-------------------------|--|--|
| Average Consistency                    | n | Consistency Index<br>CI | Consistency Ratio<br>CR |  |  |
| 4.243                                  | 4 | 0.0092                  | 0.081                   |  |  |



A consistency check was performed on the front suspension design to check for any biases amongst the different generated concepts. The weight criteria is found for each concept within the system, and to determine this criteria a series of calculations were performed to determine the consistency vector. The consistency vector shows how much bias was involved in the selection process of each of the concepts. From this the average consistency is found and can be used to find the consistency index which is used to find the consistency ratio (CR). The CR was found to be 0.081, if the CR is less than 0.10 it means that the concepts were evaluated in a consistent manor in the AHP comparisons. The lower the value of CR the more consistent and least amount of bias was involved in the selection process. This process was conducted for all four of the rover systems.

Table 24.6.15 Wheel Design AHP

|                                   | Wheel Design AHP   |                                   |             |                  |  |  |  |
|-----------------------------------|--------------------|-----------------------------------|-------------|------------------|--|--|--|
|                                   | Foam Core<br>Wheel | Integrated<br>Suspension<br>Wheel | Rigid Wheel | Full Metal Wheel |  |  |  |
| Foam Core<br>Wheel                | 1                  | 4                                 | 2           | 3                |  |  |  |
| Integrated<br>Suspension<br>Wheel | .25                | 1                                 | .33         | .5               |  |  |  |
| Rigid Wheel                       | .5                 | 3                                 | 1           | 2                |  |  |  |



| Full Metal Wheel | .33  | 2  | .5   | 1   |
|------------------|------|----|------|-----|
|                  |      |    |      |     |
| Sum              | 2.08 | 10 | 3.83 | 6.5 |
|                  |      |    |      |     |

Table 25.6.16Normalized Wheel Design AHP

| Normalized Wheel Design AHP       |                    |                                   |             |                     |        |
|-----------------------------------|--------------------|-----------------------------------|-------------|---------------------|--------|
|                                   | Foam Core<br>Wheel | Integrated<br>Suspension<br>Wheel | Rigid Wheel | Full Metal<br>Wheel | Weight |
| Foam Core<br>Wheel                | .48                | .4                                | .52         | .46                 | .47    |
| Integrated<br>Suspension<br>Wheel | .12                | .1                                | .09         | 0.08                | .10    |
| Rigid Wheel                       | .24                | .3                                | .26         | .31                 | .28    |
| Full Metal<br>Wheel               | .16                | .2                                | .13         | .15                 | .16    |
| Sum                               | 1.00               | 1.00                              | 1.00        | 1.00                | 1      |

The Normalized Wheel Design AHP in Table 1.6.16 shows that the Foam Core Wheel design would best satisfy our customer needs as it has the greatest normalized weight.



| Table 26.6.17                  |
|--------------------------------|
| Wheel Design Consistency Check |

| Wheel Design Consistency Check |                                                       |       |       |  |  |  |
|--------------------------------|-------------------------------------------------------|-------|-------|--|--|--|
|                                | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |       |       |  |  |  |
| Foam Core Wheel                | 0.47                                                  | 1.910 | 4.064 |  |  |  |
| Integrated<br>Suspension Wheel | 0.10                                                  | 0.390 | 3.900 |  |  |  |
| Rigid Wheel                    | 0.28                                                  | 1.135 | 4.054 |  |  |  |
| Full Metal Wheel               | 0.16                                                  | 0.655 | 4.094 |  |  |  |

Table 27.6.18Wheel Design Consistency Comparison

| Wheel Design Consistency Comparison |   |                         |                         |  |  |
|-------------------------------------|---|-------------------------|-------------------------|--|--|
| Average Consistency                 | n | Consistency Index<br>CI | Consistency Ratio<br>CR |  |  |
| 4.028                               | 4 | 0.0092                  | 0.010                   |  |  |

The consistency ratio was 0.010. This proves that the decision making on the concepts

were consistent and unbiased as the consistency ratio is less than 0.1.

Table 28.6.19 Driver Layout AHP

| Driver Layout AHP                                                                 |   |   |   |   |  |
|-----------------------------------------------------------------------------------|---|---|---|---|--|
| Variable height, front to back Side by side Back to Back Rear Steering, One Input |   |   |   |   |  |
| Variable height, front to back                                                    | 1 | 2 | 2 | 4 |  |



| Side by side                | .5   | 1    | .5   | 3  |
|-----------------------------|------|------|------|----|
| Back to Back                | .5   | 2    | 1    | 3  |
| Rear Steering,<br>One Input | .25  | .33  | .33  | 1  |
| Sum                         | 2.25 | 5.33 | 3.83 | 11 |

Table 29.6.20 Normalized Driver Layout AHP

| Normalized Driver Layout AHP         |                                      |              |              |                                |        |
|--------------------------------------|--------------------------------------|--------------|--------------|--------------------------------|--------|
|                                      | Variable<br>height, front<br>to back | Side by side | Back to Back | Rear<br>Steering, One<br>Input | Weight |
| Variable<br>height, front<br>to back | .44                                  | .38          | .52          | .36                            | .43    |
| Side by side                         | .22                                  | .19          | .13          | .27                            | .20    |
| Back to Back                         | .22                                  | .38          | .26          | .27                            | .28    |
| Rear<br>Steering, One<br>Input       | .11                                  | .06          | .09          | .09                            | .09    |
| Sum                                  | 1                                    | 1            | 1            | 1                              | 1      |

The Normalized Driver Layout AHP in Table 1.6.20 shows that the Variable Height, Front to Back concept would best satisfy our customer needs as it has the greatest normalized weight.



| Driver Layout Consistency Check |                      |                                      |                                        |  |
|---------------------------------|----------------------|--------------------------------------|----------------------------------------|--|
|                                 | Criteria Weights {W} | Weighted Sum Vector<br>{Ws} = [C]{W} | Consistency Vector<br>Cons = {Ws}./{W} |  |
| Variable height, front to back  | 0.43                 | 1.750                                | 4.070                                  |  |
| Side by Side                    | 0.20                 | 0.825                                | 4.125                                  |  |
| Back to Back                    | 0.28                 | 1.165                                | 4.161                                  |  |
| Rear Steering, One input        | 0.09                 | 0.356                                | 3.956                                  |  |

# Table 31.6.22Driver Layout Consistency Comparison

| Driver Layout Consistent Comparison |   |                         |                         |  |
|-------------------------------------|---|-------------------------|-------------------------|--|
| Average Consistency                 | n | Consistency Index<br>CI | Consistency Ratio<br>CR |  |
| 4.078                               | 4 | 0.026                   | 0.029                   |  |

The consistency ratio was also found for the driver layout AHP. The consistency ratio

was found to be 0.029. Thus, the AHP is consistent and unbiased.

Table 32.6.23Drivetrain AHP

|                       | Drivetrain                               |                                                           |                                          |
|-----------------------|------------------------------------------|-----------------------------------------------------------|------------------------------------------|
| Linkage<br>Drivetrain | Solid-Axle<br>Double-Input<br>Drivetrain | Chain Ring Legs<br>with Pedal<br>Driven Gearbox<br>System | Directly Driven<br>Shaft (Pedal<br>Boat) |



| Linkage<br>Drivetrain                                     | 1   | .33  | .25 | 2  |
|-----------------------------------------------------------|-----|------|-----|----|
| Solid-Axle<br>Double-Input<br>Drivetrain                  | 3   | 1    | .5  | 3  |
| Chain Ring Legs<br>with Pedal<br>Driven Gearbox<br>System | 3   | 2    | 1   | 4  |
| Directly Driven<br>Shaft (Pedal<br>Boat)                  | .5  | .33  | .25 | 1  |
| Sum                                                       | 7.5 | 3.66 | 2   | 10 |

Table 33.6.24 Normalized Drivetrain AHP

|                                                              | Normalized Drivetrain |                                          |                                                              |                                          |        |
|--------------------------------------------------------------|-----------------------|------------------------------------------|--------------------------------------------------------------|------------------------------------------|--------|
|                                                              | Linkage<br>Drivetrain | Solid-Axle<br>Double-Input<br>Drivetrain | Chain Ring<br>Legs with<br>Pedal Driven<br>Gearbox<br>System | Directly<br>Driven Shaft<br>(Pedal Boat) | Weight |
| Linkage<br>Drivetrain                                        | .13                   | .09                                      | .125                                                         | .2                                       | .14    |
| Solid-Axle<br>Double-Input<br>Drivetrain                     | .4                    | .27                                      | .25                                                          | .3                                       | .31    |
| Chain Ring<br>Legs with<br>Pedal Driven<br>Gearbox<br>System | .4                    | .55                                      | .5                                                           | .4                                       | .46    |
| Directly<br>Driven Shaft<br>(Pedal Boat)                     | .07                   | .09                                      | .125                                                         | .1                                       | .10    |



| Sum | 1 | 1 | 1 | 1 | 1 |
|-----|---|---|---|---|---|

The Normalized Drivetrain table shows that the Chain Ring Legs with Pedal Driven

Gearbox System should best satisfy our customer needs as it has the greatest normalized weight.

Table 34.6.25Drivetrain Consistency Check

| Drivetrain Consistency Check                           |                      |                                      |                                        |  |
|--------------------------------------------------------|----------------------|--------------------------------------|----------------------------------------|--|
|                                                        | Criteria Weights {W} | Weighted Sum Vector<br>{Ws} = [C]{W} | Consistency Vector<br>Cons = {Ws}./{W} |  |
| Linkage Drivetrain                                     | 0.14                 | 0.557                                | 3.979                                  |  |
| Solid-Axle Double-<br>Input Drivetrain                 | 0.31                 | 1.260                                | 4.065                                  |  |
| Chain Ring Legs with<br>Pedal Driven<br>Gearbox System | 0.46                 | 1.900                                | 4.130                                  |  |
| Directly Driven Shaft<br>(Pedal Boat)                  | 0.10                 | 0.387                                | 3.870                                  |  |

Table 35.6.26Drivetrain Consistency Comparison

| Drivetrain Consistent Comparison |   |                         |                         |  |
|----------------------------------|---|-------------------------|-------------------------|--|
| Average Consistency              | n | Consistency Index<br>CI | Consistency Ratio<br>CR |  |
| 4.011                            | 4 | 0.004                   | 0.004                   |  |



Finally, the consistency ratio was found for the drivetrain AHP. The consistency ratio found was 0.004. This number is considerably smaller than the required CR value of 0.1. This proves that drivetrain concepts comparisons on the AHP were unbiased.

#### Selection

The concept selection methods performed previously were used in the actual selection as suggestions not necessarily used at strict guidelines; there are several criteria that were considered in the final selection that were not included in the analysis such as viability considering the team's capabilities. Every selected concept won its respective Pugh and AHP analysis except for the drivetrain selection. The linkage drivetrain was selected due to its perceived viability and the opportunity to produce something very innovative.

## Table 36.6.27Selected System and Concept

| Selected Concepts             |                               |  |  |
|-------------------------------|-------------------------------|--|--|
| <u>System</u> <u>Concept</u>  |                               |  |  |
| Front suspension              | Independent suspension Fork   |  |  |
| Wheels                        | Foam Core Wheels              |  |  |
| Driver Layout                 | Variable Height Front to Back |  |  |
| Drivetrain Linkage Drivetrain |                               |  |  |

The following table presents the selected concepts, features, and reasoning for selecting.



Table 37.6.28Selected Concepts

Independent Suspension Fork:

- Deemed the greatest front suspension concept by Pugh Chart and Analytical Hierarchy Process
- Concept is viable and effective in dampening impacts and guiding rover

Foam Core Wheels

- Deemed the best wheel concept by Pugh chart and Analytical Hierarchy Process.
- Offers lightweight, low inertia, low cost wheels.

Variable Height Front to Back

- Deemed the greatest driver layout concept by Pugh Chart and Analytical Hierarchy Process
- Allows two inputs while accommodating size restrictions

Linkage Drivetrain:

- Viable, Unique, and innovative system.
- Did not win selection method analysis, however, the linkage drivetrain will be an impressive system if executed properly

If the selected concepts are proven to be inadequate or not viable the concepts considered

for R&D will be implemented instead. Development of these concepts will be performed in

parallel with the selected concepts until a proof of viability is produced.

Table 38.6.29

Selected Concepts Considered for R&D

| Concepts Considered for R&D |                          |  |  |
|-----------------------------|--------------------------|--|--|
| <u>System</u>               | <u>Concept</u>           |  |  |
| Front suspension            | Rigid Bi-Wheel Fork      |  |  |
| Wheels                      | Rigid Wheels             |  |  |
| Driver Layout               | Back to Back             |  |  |
| Drivetrain                  | Solid Axle, double input |  |  |



## **1.8 Spring Project Plan**

Figure 1.8.1 below displays the critical path methodology in which work will be conducted in the near future.

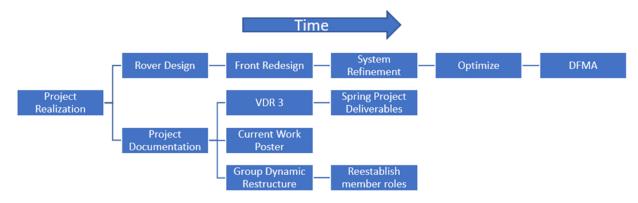



Figure 21.8.1 Project Critical Path Methodology

- Academic Calendar Milestones
  - a. Project Milestone needed to be completed by then
    - i. Important step to completing Project Milestone
  - b. Project Milestones
    - i. Spring Deliverables
- I. First day of Spring Semester (Jan 6, 2020)
  - a. Detailed Design
    - i. Chassis Design
      - 1. Seat Selection
      - 2. Attachment Points
      - 3. FEA
      - 4. Material selection
        - a. Cost analysis
        - b. Weight optimization
    - ii. Wheel Design
      - 1. Hub Selection
      - 2. Attachment points
      - 3. FEA
      - 4. Material selection
        - a. Cost analysis
        - b. Weight optimization
    - iii. Drivetrain Design
      - 1. Pedal Location Selection



- 2. Attachment Points
- 3. Constant Output design
- 4. FEA
- 5. Material selection
  - a. Cost analysis
  - b. Stress analysis
  - c. Weight optimization
- iv. Compacting Design solution
  - 1. Alteration of detailed design to compact into a 5 x 5 x 5 ft volume
  - 2. Attachment points
- v. Task completion Designs
  - 1. Designs for completing tasks on Creo/SolidWorks
  - 2. 3-D print task design instrumentation
  - 3. Manufacture task designs
  - 4. Test and tweak designs
  - 5. Weight optimization
- **II.** Registration For competition closes (Jan 16, 2020)
  - a. Team registration must be complete.
- III. Competition release forms due
  - a. Student data feedback form
  - b. Media Release Forms
  - c. Final list of team members.
- **IV.** Team Photos March (13, 2020)
  - a. Photo Included all team members and clear photo of rover
    - i. Chassis Fabrication
      - 1. Size requirements
      - 2. Weight requirement
      - 3. stability
    - ii. Wheel Fabrication
      - 1. Proper Documentation
        - a. Student design and fabrication
        - b. Completion report completed
    - iii. Drivetrain Fabrication
      - 1. Proper Documentation
        - a. Student design and fabrication
        - b. Completion report completed
    - iv. Task Fabrication
      - 1. Task equipment testing



- **V.** Spring Break (March 16-20, 2020)
  - a. Rover Assembly
  - b. Additional material selection
    - i. Approved Helmets
    - ii. Approved clothing
  - c. Testing critical targets and metrics
    - i. Does it roll
    - ii. Turning radius
      - 1. 15 foot turning radius
    - iii. Weight
      - 1. < 200 lbs. unload
      - 2. < 600 lbs. loaded
    - iv. Size
      - 1. Unfolded less than 5ft in width
      - 2. Compacted to fit within  $5ft^3$  box
    - v. Stability
      - 1. Center of mass calculation
    - vi. Clearance
      - 1. 14-inch rider clearance
    - vii. Braking
      - 1. Appropriate braking distance.
- **VI.** Travel to competition (April 15, 2020)
  - a. Complete Rover shipped/arrived at competition location
  - b. Travel for team to competition
  - c. Lodging for the weekend
- **VII.** Competition Date in Huntsville, Al (April 16-18, 2020)
  - a. April 16, 2020, 12:00-4:00 pm Team Check in
- **VIII.** Engineering Design Day (\*April 18, 2019\*)
  - a. Presentation Prepared
    - i. Design
    - ii. Fabrication
    - iii. Competition
  - **IX.** Finals (April 27, 2020)
  - X. Graduation (May 2, 2020)@ 9:00 am Donald L. Tucker Civic Center



## Chapter Two: EML 4552C

2.1 Spring Plan

Project Plan.

Build Plan.



Appendices



#### **Appendix A: Code of Conduct**

#### **Mission Statement**

Our team is dedicated to upholding professional practices, proper engineering design methods, and cooperation amongst ourselves and project stakeholders. Our goal is to exceed project expectations, displaying adequate performance in competition, by executing a methodical design process and producing an innovative product.

#### **Team Member Roles**

All team members participated in the designation of the team roles. The desire of the team members' role in the project, relevance and applicability to the project, and the workload associated with each respective position was considered during the designation of roles.

#### Design Engineer: Phillip Dimacali

- Produce mechanical 3D modeling and simulations
- Lead drivetrain, wheel, and suspension design

## Mechanical Engineer: Jessica Meeker

- Optimize mechanical systems for cost, structural, and functional efficiency
- Verify designs for manufacturing

## Manufacturing Engineer: Lazaro Rodriguez

- Responsible for purchasing and installing equipment
- Collaborate with mechanical engineer on product and cost efficiency
- Improving production by collaborating with design engineer
- Planning and organizing maintenance on vehicle



## Project Engineer: Tavares Butler

- Manage and review project documents
- Liaison between project team members and immediate stakeholders

## Quality Engineer: Jerald Yee

- Ensure team is ahead of project deadlines
- Provide quality assurance of project productions including documentation, prototypes, final products

#### Communication

The main form of communication for our team will be through group text, and file sharing will be done through Google Docs and Microsoft Outlook. All team members will have access to the shared Google Doc and Outlook files. The team will use our school email to contact our sponsor and advisor to set up meetings and ask questions. Team members will be responsible for checking messages and emails regularly and responding within 24 hours from the initial contact. Each member is responsible for being appropriate and respectful throughout all communication, both with each other and with our sponsor and advisor.

## **Dress Code**

#### **Team meetings:**

For general scheduled team meetings, casual attire will be acceptable.

#### **Advisor/Sponsor Meetings:**

For meetings with our advisor or sponsor, our team will be in business casual attire. This includes dress shirts, polo shirts, blouses, long pants, professional skirts, and closed toed shoes.

#### **Presentations:**



For presentations, the entire team should be in professional attire. This includes dress pants, dress shirts, a suit, dress shoes, and professional blouses and skirts.

## **Attendance Policy:**

Each team member is expected to participate in all meetings and to arrive on time. Team members should notify the team if they must miss a meeting due to an emergency, scheduling conflict, etc.

## **Decision Making and Conflict Resolution:**

Decisions that are critical to the outcome of the project and/or are controversial between group member concurrences will be analyzed and decided with a unanimous vote. Additionally, all group members are encouraged to be open and honest regarding any current or potential issues they may have with the project and its affiliates.




# **Team Member Signatures**

Phillip Dimacali 1. Jessica Meeker 2 Lazaro Rodriguez **Tavares Butler** avares lee Jerald Yee 5.



## **Appendix B: Functional Decomposition**

Figure B22 Complete Rover Functional Decomposition Flowchart





# **Appendix C: Target Catalog**

# Table C39 *Target Catalog*

| Metric                                                 | Target                                |
|--------------------------------------------------------|---------------------------------------|
| Amount of fixture points                               | 4-point restraints                    |
| Mobility allowed                                       | Extremities                           |
| Time                                                   | 20 seconds                            |
| Mobility allowed                                       | Extremities                           |
| Height, weight                                         | 5'0" to 6'4"                          |
|                                                        | Maximum weight capacity 400 lbs total |
| Angle of protection                                    | 180 degrees                           |
| Angle of vision                                        | 360 degrees                           |
| Clearance                                              | At least 1 inch                       |
| Clearance                                              | At least 1 inch                       |
| Suspension travel                                      | 7 inches                              |
| Suspension travel                                      | 7 inches                              |
| Factor of safety                                       | 2                                     |
| Length of misalignment                                 | < 0.01 inches                         |
| Type of input                                          | Pedal power                           |
|                                                        | Hydraulic braking                     |
|                                                        | Mechanical steering                   |
| Type of output                                         | Torque to wheels                      |
|                                                        | Orientating steering system           |
| Types of bearing, gear, sprocket, chain, etc. fitments | ANSI, AGMA, SAE standard fits         |
| Suspension Travel                                      | 7 inches                              |
| Suspension type                                        | Coil spring & damper                  |
| Rider component height                                 | 14 inches                             |
| Suspension type                                        | Coil spring & damper                  |
| Rider component height                                 | 14 inches                             |
| Rider approval                                         | 100% approval                         |
| Center of gravity                                      | Relatively low                        |
| Type of suspension                                     | Long-travel, coil spring & damper     |
| Factor of safety                                       | 2                                     |
| Number of shaft supports                               | 2                                     |
| Length of misalignment                                 | < 0.01 inches                         |
| Clearance                                              | 1 inch                                |
| Factor of Safety                                       | 2                                     |
| Type of fixing                                         | Through bolt                          |
| Rider Component height                                 | 14 inches                             |
| Number of restraint fixtures                           | 4                                     |
| Turning radius                                         | 15 foot                               |
| Type of brakes                                         | hydraulic                             |
| Type of transmission                                   | Variable torque                       |
| Type of transmission                                   | Concealed, recessed components        |
| Length of misalignment                                 | < 0.01 inches                         |
| Type of mate                                           | Weld, through bolt                    |
| Turning radius                                         | 15 feet                               |
| Type of transmission                                   | Variable torque                       |

Team 514

65



| Unloaded Weight          | 200 lbs          |
|--------------------------|------------------|
| Drivetrain Torque ratio  | Variable         |
| Total Cost of Vehicle    | < \$2000         |
| Unassembled cubic volume | 48 square inches |



## Appendix D: Work Breakdown Structure

Table D40Team 514 Work Breakdown Structure

| PROJECT CHARTER                            | DUE: SEP 20, 5 PM |  |
|--------------------------------------------|-------------------|--|
| Assignment meeting                         | Entire team       |  |
| Scope                                      | Entire team       |  |
| Mission statement                          | Lazaro            |  |
| Team roles                                 | Jessica           |  |
| communication                              | Phillip           |  |
| Dress code                                 | Tavares           |  |
| Attendance policy                          | Jerald            |  |
| Statement of understanding                 | Entire team       |  |
| Submission                                 | Tavares           |  |
|                                            |                   |  |
| WORK BREAKDOWN STRUCTURE DUE: SEP 20, 5 PM |                   |  |
| List evidence book milestones              | Jessica           |  |
| Tasks                                      | Tavares           |  |
| Assignee                                   | Phillip           |  |
| Tasks are detailed to completion           | Jerald            |  |
| Submission                                 | Tavares           |  |
|                                            |                   |  |
| CUSTOMER NEEDS                             | DUE: SEP 20, 5 PM |  |
| Team scheduling                            | Jerald            |  |
| Rubric Review                              | Entire team       |  |



| Develop statement/need table                                                                                                                                                        | Lazaro            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| Develop interpreted needs                                                                                                                                                           | Jerald            |  |
| Develop high-fidelity needs                                                                                                                                                         | Phillip           |  |
| Proofread/Editor                                                                                                                                                                    | Tavares           |  |
| Submission                                                                                                                                                                          | Tavares           |  |
|                                                                                                                                                                                     |                   |  |
| FUNCTIONAL DECOMPOSITION                                                                                                                                                            | DUE: SEP 27, 5 PM |  |
| Team scheduling                                                                                                                                                                     | Jerald            |  |
| Rubric Review                                                                                                                                                                       | Entire team       |  |
| Competition guidebook review                                                                                                                                                        | Entire team       |  |
| <ul> <li>HPV weight limit</li> <li>Wheel design regulations</li> <li>Drivetrain design regulations</li> <li>Obstacle and Task breakdown</li> <li>Scoring system analysis</li> </ul> |                   |  |
| Decompose functions                                                                                                                                                                 | Tavares           |  |
| F.D. cross reference table                                                                                                                                                          | Phillip           |  |
| F.D. Chart                                                                                                                                                                          | Phillip           |  |
| Explanation of Results                                                                                                                                                              | Tavares           |  |
| Connection to Systems                                                                                                                                                               | Jerald            |  |
|                                                                                                                                                                                     |                   |  |

Jessica

Jessica

Smart Integration



| Function Resolution                                                                                                                           | Lazaro            |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Proofread/Editor                                                                                                                              | Tavares & Phillip |
|                                                                                                                                               | -                 |
| Submission                                                                                                                                    | Tavares           |
| VDR1 SEP 30                                                                                                                                   | Entire team       |
| Team scheduling                                                                                                                               | Jerald            |
| Project Background                                                                                                                            | Jerald            |
| Project Scope                                                                                                                                 | Tavares           |
| Market/Stakeholders                                                                                                                           | Lazaro            |
| Custom Needs                                                                                                                                  | Jessica           |
| Functional Decomposition                                                                                                                      | Phillip           |
| Submission                                                                                                                                    | Tavares           |
|                                                                                                                                               | •                 |
| Targets                                                                                                                                       | DUE: OCT 4, 5 PM  |
| Team scheduling                                                                                                                               | Jerald            |
| Rubric Review                                                                                                                                 | Entire team       |
| Assign each function a target                                                                                                                 | Lazaro            |
| Address additional targets, disregarding functions                                                                                            | Jerald            |
| Validate targets                                                                                                                              | Phillip           |
| Discuss derivation                                                                                                                            | Tavares           |
| Tools of measurement                                                                                                                          | Jessica           |
| List critical targets and metrics                                                                                                             | Phillip           |
| <ul> <li>Consult competition guidebook</li> <li>Compare tasks to required regulations</li> <li>Compare additional targets to point</li> </ul> |                   |



| breakdown                       |                   |
|---------------------------------|-------------------|
| Summarize targets with catalog  | Jerald            |
| Submission                      | Tavares           |
|                                 |                   |
| VDR1-REV2 OCT 7                 | Entire team       |
| Team Scheduling                 | Jerald            |
| Previous VDR1 review            | Jerald            |
| Targets                         | Phillip           |
| Metrics for success             | Lazaro            |
| VDR1 SUBMISSION                 | Entire team       |
| PEER EVALUATION                 | Entire team       |
| CONCEPT GENERATION              | DUE:              |
| Team scheduling                 | Jerald            |
| Rubric Review                   | Entire team       |
| "100" Concepts                  | Entire team       |
| Specialized Drivetrain Concepts | Phillip           |
| Specialized Wheel Concepts      | Phillip           |
| 5 Medium Fidelity Concepts      | Tavares           |
| 3 High Fidelity Concepts        | Jessica           |
| Concept Generation Tools        | Jerald            |
| Proofread/Editor                | Phillip & Tavares |
| Submission                      | Tavares           |
| CONCEPT SELECTION               | DUE: OCT 25, 5 PM |
| Team scheduling                 | Jerald            |



| Rubric Review                                    | Entire team       |
|--------------------------------------------------|-------------------|
| House of Quality                                 | Lazaro            |
| Pugh Chart                                       | Phillip           |
| AHP                                              | Jerald            |
| Reiteration                                      | Phillip           |
| Final Selection                                  | Entire Team       |
| Proofread/Editor                                 | Jessica           |
| Submission                                       | Tavares           |
| SUBMIT VDR2                                      | Entire team       |
| Team scheduling                                  | Jerald            |
| Concept Generation                               | Jessica           |
| Key targets(Wheels and Drivetrain)               | Phillip           |
| House of quality                                 | Tavares           |
| Pugh Chart                                       | Jerald            |
| АНР                                              | Lazaro            |
| Concept selection                                | Lazaro            |
| ВОМ                                              | DUE:TBD           |
| Team scheduling                                  | Jerald            |
| Material selection                               | Lazaro            |
| Material Review                                  | Jessica           |
| PEER EVALUATION                                  | Entire team       |
| RISK ASSESSMENT                                  | DUE: NOV 15, 5 PM |
| Identify potential hazards regarding our project | Tavares           |



| Research safety hazards and site primary source                   | Phillip               |
|-------------------------------------------------------------------|-----------------------|
| Develop contingencies                                             | Jerald                |
| Develop safety measures and personal protection, procedures, etc. | Lazaro                |
| Identify emergency responses                                      | Jessica               |
| Identify emergency contact                                        | Tavares               |
| Submission                                                        | Tavares               |
| SPRING PROJECT PLANNING                                           | Due: Nov 22, 11:59 PM |
| Timeline                                                          | Entire team           |
| Milestones                                                        | Entire Team           |
| Deliverables                                                      | Entire Team           |
| Submission                                                        | Tavares               |
| VDR3 NOV 25                                                       | Entire Team           |
| SPONSOR AND ADVISOR EVAL                                          | Entire Team           |
| VD3 POSTER                                                        | Entire Team           |

## Work Breakdown Expectations

Table D1, the team work breakdown structure, is to be reference by team members; the work breakdown structure is not to be followed necessarily verbatim. However, it gives the team a sense of individual responsibility.

Although every team member is expected to contribute a fair share of work (see code of conduct), this work breakdown structure creates a lead in the event any tasks are not being completed or the work is below the team standard set in the code of conduct.



## **Appendix E: Generated Concepts List**

# Table E41Generated Concepts List

HF - High Fidelity Concept

# MF - Medium Fidelity Concept

| #  | Concept                     | Description                                    |
|----|-----------------------------|------------------------------------------------|
| 1. | Independent Suspension Fork | 4-bar linkage suspension for each wheel,       |
|    |                             | spring damper strut, single moment input.      |
| 2. | Chain Ring Rear Legs        | Accepts moment input, transmits torque         |
|    |                             | through chainring to wheels. Rotates about     |
|    |                             | chassis, suspended by spring damper.           |
| 3. | Pedal driven gearbox system | Pedal into gearbox, shaft drive, into gearbox, |
|    |                             | then to wheels.                                |
| 4. | Foam core wheel             | Metal hub, fiberglass shell, rubber tread,     |
|    |                             | structural foam core.                          |
| 5. | Rigid bi-wheel fork         | Front rigid fork accommodating two wheels.     |
| 6. | Ski fork                    | Rigid fork with two suspended skis on either   |
|    |                             | side.                                          |
| 7. | Elevated driver layout      | One driver, sitting forward, provides          |
|    |                             | propulsive power; the other sits aft elevated  |
|    |                             | steering.                                      |
| 8. | Tricycle                    | Two wheels aft, one front.                     |



| 9.  | Rigid bike                   | Rigid suspension.                             |
|-----|------------------------------|-----------------------------------------------|
| 10. | CVT transmission             | Incorporating a CVT into drivetrain.          |
| 11. | Tracks                       | Utilizing linked tracks in drivetrain.        |
| 12. | Differential                 | Incorporating a differential into drivetrain. |
| 13. | Integrated Suspension Wheels | Wheels that incorporate suspension parts and  |
|     |                              | potential energy.                             |
| 14. | Pneumatic wheels             | Wheels that utilize air pressure.             |
| 15. | Linkage steering             | Achieving mechanical manipulation by using    |
|     |                              | a linkage system.                             |
| 16. | Hydraulic steering           | Integrating hydraulic, lines, and rams into   |
|     |                              | the rover system.                             |
| 17. | Leaf springs                 | Suspending wheels using leaf springs.         |
| 18. | Rear Steering                | Steering vehicle from rear wheels like a      |
|     |                              | forklift.                                     |
| 19. | Double input drivetrain      | Accepting work from both drivers into         |
|     |                              | propulsion system.                            |
| 20. | Hydraulic braking            | Using hydraulic lines, and rams in braking.   |
| 21. | Cable braking                | Using cables in braking system.               |
| 22. | Tricycle Sled                | Two rear wheels drive a snowmobile like       |
|     |                              | front sled.                                   |



| 23. | Tricycle Sled               | Two rear wheels drive a snowmobile like       |
|-----|-----------------------------|-----------------------------------------------|
|     |                             | front sled.                                   |
| 24. | Single Sled                 | One long sled down the middle with two        |
|     |                             | wheels providing power.                       |
| 25. | Sideways trike              | Two wheels on the right side with one wheel   |
|     |                             | on the left side.                             |
| 26. | Diamond shape               | One wheel in the front and back, two wheels   |
|     |                             | on each side.                                 |
| 27. | Built in wheel suspension   | Spokes have some built in suspension to       |
|     |                             | absorb impacts on the rim.                    |
| 28. | Prone harness               | Harness to secure one rider in a prone        |
|     |                             | position for steering and tasks.              |
| 29. | Leg sled propulsion         | Rigid sled is pushed back and forth by riders |
|     |                             | to supply power to an axial.                  |
| 30. | Sled training wheels        | Sleds fashioned on each side of a wheel for   |
|     |                             | stability.                                    |
| 31. | In-line seating             | Seating for both riders in a straight line    |
| 32. | Alternating in-line seating | Both riders are seated in a line facing       |
|     |                             | different directions.                         |
| 33. | Side by side seating        | Both riders are seated next to each other.    |

75



| 34. | Suspended steering               | A wheel is suspended off the ground, the        |
|-----|----------------------------------|-------------------------------------------------|
|     |                                  | driver pushes the wheel down at desired         |
|     |                                  | angle turning the vehicle.                      |
| 35. | Multi-segmented body             | Body separated by parts to allow quick          |
|     |                                  | assembly/disassembly and individual             |
|     |                                  | suspension.                                     |
| 36. | Fluid filled wheels              | Non-compressible fluid used as wheel            |
|     |                                  | structure.                                      |
| 37. | Elliptical power                 | Rider moves paddles up and down to              |
|     |                                  | produce power to axial.                         |
| 38. | Steam roller front wheel         | One, long wheel to smooth out small             |
|     |                                  | obstacles before vehicle passes over.           |
| 39. | Pedal steering                   | Mechanical linkages controlled with the         |
|     |                                  | riders feet.                                    |
| 40. | Row power propulsion             | A bar can be pulled or pushed to generate       |
|     |                                  | motion. Could add to pedal power.               |
| 41. | Soft tire treading               | Soft treads absorb some impact.                 |
| 42. | Rope steering                    | Like a sailboat. Pull on the rope to adjust the |
|     |                                  | position of front axle.                         |
| 43. | Metal rimmed-rubber edged wheels | Wheel is a metal hub with rubber tread.         |
| 44. | Metal rimmed -track              | Wheel is a metal hub with tracking tread.       |



| 45. | Two independent frames                    | Vehicle is separated into two halves that can |
|-----|-------------------------------------------|-----------------------------------------------|
|     |                                           | rotate independently depending on surface.    |
| 46. | Wood wheels                               | Solid wood wheel hub with wood framing.       |
| 47. | Double Input-Sideways seating             | Pilots sit side by side with both driving     |
|     |                                           | inputs.                                       |
| 48. | Single Input-Sideways seating             | Pilots sit side by side with a single input.  |
| 49. | Metal rimmed - metal tread                | Wheel is a metal hub with metal tread.        |
| 50. | Segmented double ski                      | Skis on the side of the rover that are        |
|     |                                           | segmented.                                    |
| 51. | Double standing pedal and single steering | Riders pedal while standing and one rider     |
|     |                                           | steers.                                       |
| 52. | Single standing pedal and single elevated | One rider stands and pedals, while rider in   |
|     | sitting steering                          | the rear sits elevated and steers             |
| 53. | Reverse seating double input              | Riders sit with their back towards each other |
|     |                                           | and both pedal.                               |
| 54. | Reverse seating single input              | Riders sit with their back towards each other |
|     |                                           | and one rider pedals.                         |
| 55. | Two wheels double input                   | Bicycle with both riders pedaling.            |
| 56. | Two wheels single input                   | Bicycle with one rider pedaling.              |
| 57. | Retractable seating                       | Riders can retract their seats back and forth |
|     |                                           | for greater power.                            |



| 58. | Aluminum framing                          | Vehicle is made out of lightweight           |
|-----|-------------------------------------------|----------------------------------------------|
|     |                                           | aluminum.                                    |
| 59. | Metal-wood-rubber wheels                  | Wheels have a metal hub, with wood           |
|     |                                           | framing, and rubber treads.                  |
| 60. | Double steering                           | Riders have the option to control/ share the |
|     |                                           | steering.                                    |
| 61. | Sitting and laying seating - single input | The rider sitting will power the vehicle,    |
|     |                                           | while laying rider will complete obstacle    |
|     |                                           | tasks.                                       |
| 62. | Double input- weight shift steering       | Both riders will pedal while shifting their  |
|     |                                           | weight to either side of the rover to turn.  |
| 63. | Ski-Prone Pilot (MF)                      | Rider is prone rotating front ski to steer   |
|     |                                           | vehicle with the second providing power to   |
|     |                                           | the rear axle.                               |
| 64. | Built in Tire Suspension (MF)             | Spokes are jointed to allow compression; A   |
|     |                                           | spring damper is in between the linkages in  |
|     |                                           | order to absorbs some energy.                |
| 65. | Sideways Trike (MF)                       | Two wheels on one side, with adjustable      |
|     |                                           | rider position.                              |
| 66. | Prone Pilot Tricycle (MF)                 | Driver is secured by a harness in the prone  |
|     |                                           | position. Second rider drives the rear axle. |



| 67. | Diamond Rover (MF)                      | Wheels positioned in a diamond pattern with    |
|-----|-----------------------------------------|------------------------------------------------|
|     |                                         | rear rider provides power.                     |
| 68. | Rigid Bi-Wheel Fork (HF)                | Accepts an input from a four-bar crank-        |
|     |                                         | rocker steering system.                        |
| 69. | Ski Fork (HF)                           | Utilizes two skis along each side of the       |
|     |                                         | central wheel.                                 |
| 70. | Single Input Driver Layout (HF)         | One driver provides propulsion through         |
|     |                                         | pedal power; the other is slightly elevated in |
|     |                                         | the rear steering.                             |
| 71. | Solid-Axle Double-Input Drivetrain (HF) | Utilize chain drives for driver input; there   |
|     |                                         | will be no torque manipulation.                |
| 72. | Foam Core Wheel (HF)                    | A metal hub, containing bearings, a            |
|     |                                         | fiberglass shell, rubber treads, and an        |
|     |                                         | injected foam core for structural support.     |
| 73. | Independent Suspension Fork (HF)        | Allows for small, required turning radius as   |
|     |                                         | well as vibration and impact dampening.        |
| 74. | Linkage Drivetrain (HF)                 | Two cranks are coupled on each side to form    |
|     |                                         | a four-bar double crank mechanism.             |
| 75. | Filtered Lens                           | Interchangeable lens housing the colored       |
|     |                                         | filters.                                       |



| 76. | Hand-held Filters               | Holding the filters in front of the camera    |
|-----|---------------------------------|-----------------------------------------------|
|     |                                 | with riders' hands.                           |
| 77. | Digital Filters                 | Digitally apply colored filters               |
| 78. | Cell Phone Camera               | Use of the rider's cell phone camera to take  |
|     |                                 | the filtered photos.                          |
| 79. | Custom Variable Viewfinder (HF) | Device attached to a camera that allows the   |
|     |                                 | colored filters to be changed with ease.      |
| 80. | The Simple Circuit              | Crude but cheap and effect circuit containing |
|     |                                 | the needed materials.                         |
| 81. | Deployable Solar Cell (HF)      | Compact device used with the ability to       |
|     |                                 | detect sunlight, housing a compass to allow   |
|     |                                 | for proper orientation deployment.            |
| 82. | Compass Circuit                 | The simple circuit built around a compass.    |
| 83. | Easy Out                        | Connect components only using wires, crude    |
|     |                                 | and un-innovative but cheap.                  |
| 84. | Over Kill                       | Elaborate housing unit that is water and dust |
|     |                                 | resistant.                                    |
| 85. | LED Power Indicator             | Use off multiple LED to indicate how much     |
|     |                                 | power is being drawn in by the photovoltaic   |
|     |                                 | cell.                                         |



| Core then Store     | Use of a commercial coring device and                                            |
|---------------------|----------------------------------------------------------------------------------|
|                     | ese of a commercial coming device and                                            |
|                     | storing it in a collection bin afterwards.                                       |
| Core Retriever (HF) | Originally designed device to collect a core                                     |
|                     | sample and store in the same unit, while still                                   |
|                     | allowing analysis of the internal contents.                                      |
| Bore and Store      | Use of a conical boring device that upon                                         |
|                     | closing resembles a cone while housing the                                       |
|                     | collected sample.                                                                |
| Adapted Corer       | Adaptation of a commercial concrete coring                                       |
|                     | machine to be used on softer materials and                                       |
|                     | with slurries.                                                                   |
| Vacuum Corer        | Use of suction to pull the cored contents into                                   |
|                     | a storage cylindrical container.                                                 |
| Plastic Sleeve      | Plastic cylindrical sleeve to act as the storage                                 |
|                     | device for the contents gathered.                                                |
| Cap n' Go (HF)      | Adaptation of an extended grabbing device                                        |
|                     | altered to hold a cupping and sealing                                            |
|                     | mechanism that allows for collection and                                         |
|                     | storage in one collection attempt.                                               |
|                     | Bore and Store         Adapted Corer         Vacuum Corer         Plastic Sleeve |



| 93. | The Dino Grabber              | Use of the Dino grabbing toy to grab the      |
|-----|-------------------------------|-----------------------------------------------|
|     |                               | solid materials and released into a storage   |
|     |                               | contain.                                      |
| 94. | Trash Picker Upper            | Adapted trash collecting device to be able to |
|     |                               | collect liquid and solid materials of various |
|     |                               | volume.                                       |
| 95. | Extended Scoop                | Creation of a scooping device with the        |
|     |                               | ability to extend to prevent the need of the  |
|     |                               | rider to leave the vehicle.                   |
| 96. | Vending Capsules              | Use of vending capsules to act as the         |
|     |                               | collection and storage container for          |
|     |                               | collection devices. Prevents cross            |
|     |                               | contamination.                                |
| 97. | Custom Capsules               | Originally designed capsules manufactured     |
|     |                               | to act the storage device that can be used    |
|     |                               | during sample collection. Attached to one of  |
|     |                               | the collection devices. Prevents cross        |
|     |                               | contamination.                                |
| 98. | Rover mounted collection bins | Storage containers of sample collections are  |
|     |                               | attached to the frame of the rover to allow   |
|     |                               | for easy storage.                             |



| 99.  | Rider Mounted collection harness | Utility strap worn by the rider to hold the |
|------|----------------------------------|---------------------------------------------|
|      |                                  | collected samples held in the storage       |
|      |                                  | capsules.                                   |
| 100. | Ladle and Rinse                  | Use of a common kitchen ladle to scoop the  |
|      |                                  | collection materials and rinse after each   |
|      |                                  | collection sample to prevent cross          |
|      |                                  | contamination.                              |



## References

There are no sources in the current document.