NASA Human Exploration ROVER

Tavares Butler Phillip Dimacali Jessica Meeker Lazaro Rodriguez Jerald Yee

FAMU-FSU Engineering

7-Feb-20

Team Introductions

Tavares Butler Project Engineer

Jessica Meeker Mechanical Engineer

Phillip Dimacali Design Engineer

Jerald Yee Quality Engineer

Lazaro Rodriguez Manufacturing Engineer

Shayne McConomy, Ph.D.

Chiang Shih, Ph.D.

A statewide network of colleges and universities supporting the expansion and diversification of Florida's space industry through grants, scholarships, and fellowships to students and educators in Florida.

Jessica M.

Objective

To produce a functional rover capable of completing challenge course obstacles and tasks while being able to traverse on various terrains and adhere to the rules set forth by the 2020 guidebook.

Project Background

Competition Dates: April 17-18, 2020 Location:

Huntsville, Al

- 14 Obstacles
- 5 Tasks
- 2 excursion attempts
- 8:00 minute time limit per excursion attempted
- 114 Total Points Possible

Jessica M.

Competition Point Breakdown

Teams Evaluated Regarding:

Obstacles

• Vehicle Weight

- Vehicle Volume
- Assembly Time
- Excursion Time
- Tasks and obstacles are attempted/completed
- Vehicle Performance
- Several other parameters

Obstacle/Task Number	Description	Bypass	Possible Points	Point Breakdown	
1	Undulating Terrain	Y	2	2 points for successful completion 1 point for attempt 0 points for bypass	
2	Crater with Ejecta	Y	2	2 points for successful completion 1 point for attempt 0 points for failure to attempt	

Tasks

Task 3 (Obstacle 9 must be attempted to attempt Task 3.)	Core Sample Retrieval	Y	9	Core Sample Retrieval 1 point for having all tools necessary to attempt the task (ERR) 4 points for successful core sample extraction (TS) 4 points for successful return of core sample that meets designated criteria (PER)
--	-----------------------	---	---	--

Project Scope: Key Goals

- Rover Successfully traverses competition course
- Wheel & Drivetrain are originally designed and manufactured
- Rover instruments are structurally sound and functional
- Misalignments and vibrations are minimized
- Rover Drivers are kept safe during excursions

• Primary Markets

Organizations performing space exploration and those who require a vehicle to traverse regolith terrain

• Secondary Markets

Hobbyists, outdoorsmen, and smaller organizations that require a capable off-road vehicle such as ski resorts and remote nature parks.

Assumptions

- Vehicle will be designed, specified, and verified using earth's physical specifications
- Rover drivetrain will be entirely human-powered
- Rover drivers will control steering, propulsion, and braking

Stakeholders

Stakeholder	Financial	Decision Maker
Shayne McConomy	✓	~
Chiang Shih		✓
Keith Larson		▲
FAMU-FSU College of Engineering	~	~
NASA		✓

Customer Needs

Customer Statement	Interpreted Need
A rover with riders in position ready to ride must have no less than 12 inches (30.48 cm) ground clearance.	All components in contact with the rider are at least 12 inches from the ground to its lowest point (seats, pedals, handles, etc.).
Failure to provide robust, practical seat restraints prohibits course participation.	The vehicle drivers are secure and safe during operation.
We encourage you to avoid using bike chains, which have proven to be inadequate in past races.	The vehicle utilizes an innovative and effective drivetrain system.
A tasks and obstacles of similar events are completed for full points.	Vehicle is capable of completing tasks.

Functional Decomposition

Flow Charts

Jerald Y.

🕑 🚱 FAMU-FSU Engineering

🕑 🕮 FAMU-FSU Engineering

MECHANICAL ENGINEERING

🐨 💮 FAMU-FSU Engineering

Functional Cross Reference

	Recurring Function Groups			
	Vibration Control	Structural	Power Transmission	
Provide Safety	 Disallow vehicle component collision Protect Vehicle Adapt To Terrain Support rotary and linear motion 	 Fix to vehicle Restrain object Block unwanted particles Accommodate kinetic components 	 Accept Work Transmit work 	
Provide Structural Stability	 Adjust to terrain Dampen impacts Control oscillations Align rotary components 	 Return to natural position Cushion riders Orient riders in vehicles Apply stress to components Align axis of rotation Reinforce components Provide unobstructed rotary motion 		
Translate Motion	 Prevent Vibration Disallow Vibrations 	 Fix to object 	 Produce desired forces/moments Output force/moments 	

Device Action and Outcome

	Vibration Control		Structural		Power Transmission
•	Dampen impacts Control oscillations Maintain axis alignment for rotary components	•	Suspend riders to a required height Withstand deformation Secure and protect riders Accommodate kinetic vehicle components	•	Accept input forces/moments Manipulate forces/moments Output forces/moments

Five Most Important Points from this Lecture

- 1. Rover is powered by two individuals and meets safety regulations.
- 2. Innovative designs for the wheels and drivetrain.
- 3. Three systems; Provide Safety, Provide Structure Stability, Translate Motion.
- 4. Functional Cross Reference.
- 5. Device Action and Outcome.

Future Work

- Selecting an optimized course for most points
- Targets and Metrics

FAMU-FSU Engineering

 Concept generation and selection

References

National Aeronautics and Space Administration. (2020). Human Exploration Rover Challenge: 2020 Guidebook. NASA Human Exploration Rover Challenge: 2020 Guidebook. Alabama, United States of America.

Contact Us

Tavares Butler tlb16b@my.fsu.edu Phillip Dimacali pmd15@my.fsu.edu Jessica Meeker jtm17m@my.fsu.edu Lazaro Rodriguez lar15b@my.fsu.edu Jerald Yee jty16b@my.fsu.edu