Tavares Butler Phillip Dimacali Jessica Meeker Lazaro Rodriguez Jerald Yee

NASA Human

Department of Mechanical Engineering

Exploration ROVER

Team Introductions

Tavares Butler Project Engineer

Jessica Meeker Mechanical Engineer

Phillip Dimacali Design Engineer

Jerald Yee Quality Engineer

Lazaro Rodriguez Manufacturing Engineer

Sponsor and Advisor

Shayne McConomy, Ph.D.

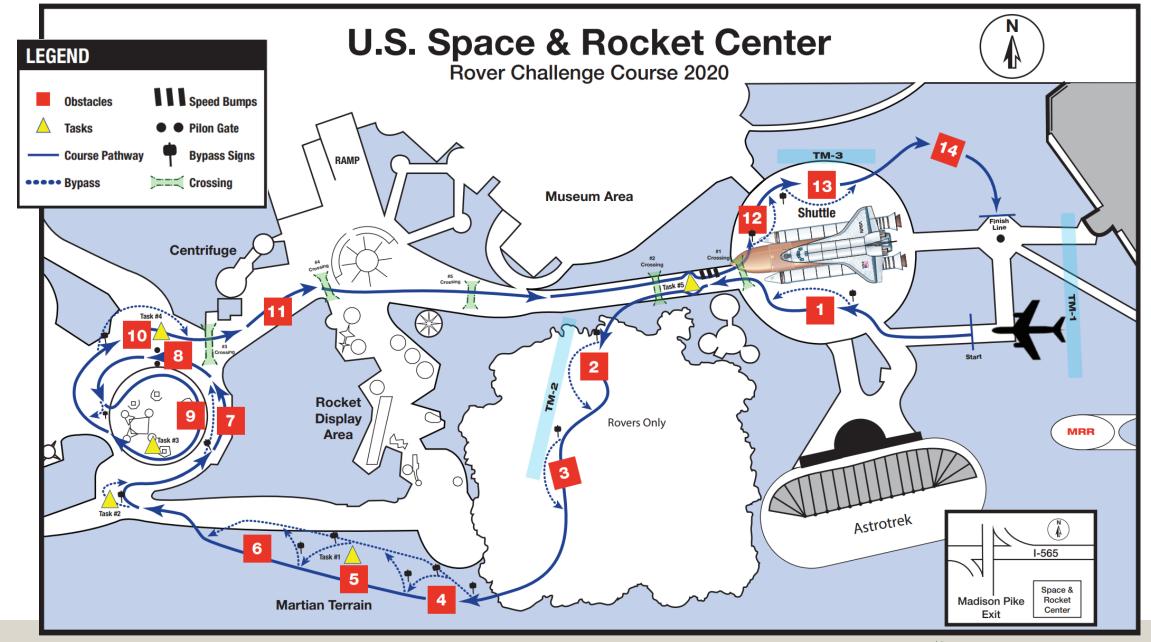
Chiang Shih, Ph.D.

A statewide network of colleges and universities supporting the expansion and diversification of Florida's space industry through grants, scholarships, and fellowships to students and educators in Florida.

Objective

To produce a functional rover capable of completing challenge course obstacles and tasks while being able to traverse on various terrains and adhere to the rules set forth by the 2020 guidebook.

Project Background


Competition Dates: April 17-18, 2020 Location:

Huntsville, Al

- 14 Obstacles
- 5 Tasks
- 2 excursion attempts
- 8:00 minute time limit per excursion attempted
- 114 Total Points Possible

Competition Point Breakdown

Teams Evaluated Regarding:

• Vehicle Weight

- Vehicle Volume
- Assembly Time
- Excursion Time
- Tasks and obstacles are attempted/completed
- Vehicle Performance
- Several other parameters

Obstacle/Task Number	Description	Bypass	Possible Points	Point Breakdown	
1	Undulating Terrain	Y	2	2 points for successful completion 1 point for attempt 0 points for bypass	
2	Crater with Ejecta	Y	2	2 points for successful completion 1 point for attempt 0 points for failure to attempt	

Tasks

Obstacles

Task 3 (Obstacle 9 must be attempted to attempt Task 3.)	Core Sample Retrieval	Y	9	Core Sample Retrieval 1 point for having all tools necessary to attempt the task (ERR) 4 points for successful core sample extraction (TS) 4 points for successful return of core sample that meets designated criteria (PER)
--	-----------------------	---	---	--

Lazaro Rodriguez

Department of Mechanical Engineering

Mission-Critical Targets

Target	Validation	Tools Necessary
Driver mobility limited to the extremities	Having the driving physical sit in the seat and adjust restraints accordingly	Measuring equipment and the assembled restraint system
5°0" to 6°4" Height accommodation Maximum weight capacity 400 lbs. total	Take measurements of individuals and test through 3D modeling	Measuring equipment and 3D modeling software
Pedal power Hydraulic braking Mechanical steering	Physical tests: I.e. normal brake testing (pedaling to a certain speed and breaking, then measuring the distance)	For a physical test, we need the built components of the HPV. Also, 3D modeling software to test design before the build.

Mission-Critical Targets

Torque to wheels Orientating steering system	3D modeling and physical test once the vehicle is built.	3D modeling software and physical components. Measuring equipment for torque test.
14-inch rider-related component clearance	Test through measurement and 3D modeling. We'll design to make suspension adjustable to enable additional height adjustments.	3D modeling software and measuring equipment
15 foot turning radius	Test through measurement of turning radius. Design to the specific turning radius and additional checking through 3D modeling	3D modeling software and measuring equipment

Concept Generation

Generation Methods used:

- The Morphological Chart
- Brainstorming
- Random Input technique
- Biomimicry

The Morphological Chart

Suspension	Steering	Drivetrain	Wheels
 Linkage Coil Spring	 Hydraulic Rear Front Mechanical Cable 	 Chain Drive Differential CVT Shaft Driven Linkage Gearbox Single or	 Integrated Spring
/Dampener Leaf Springs Independent Rigid Wheel Integrated		Double Input Tracks	/dampener Pneumatic Treaded Foam Core

The Morphological Chart

Suspension	Steering	Drivetrain	Wheels
 Linkage Coil Spring	 Hydraulic Rear Front Mechanical Cable 	 Chain Drive Differential CVT Shaft Driven Linkage Gearbox Gearbox Single or	 Integrated Spring
/Dampener Leaf Springs Independent Rigid Wheel Integrated		Double Input Tracks	/dampener Pneumatic Treaded Foam Core

Concept Selection

Tavares Butler

Department of Mechanical Engineering

House of Quality

Methodology of applying relative weights to engineering characteristics based on the customer needs

			Engineering Characteristics					
Improvement direction		Ť	Ť	Ť	Ť	Ť	Ţ	Ť
Units		# of extremities	in	in*lbf	in*lbf, lbf	in	in	
Customer Requirements	Importance weight factor	Driver Mobility	Rider size accommodat ion	Driver Input	Rover Output	Rider position height	Turning Radius	Rover Stability
Control	7	8	4	8	8	4	8	8
Reliability	9	4	0	4	4	2	4	8
Simplicity	6	1	0	4	4	0	1	4
Impact Dampening	4	0	0	2	8	0	0	8
Assembly	6	0	1	8	4	1	2	2
Innovative	3	2	0	8	4	0	1	4
Cost effective	1	2	0	8	8	0	0	4
Safety	7	8	8	4	4	8	4	8
Machinability	2	0	2	8	4	0	0	2
Raw score (1253)		162	94	248	228	108	141	272
Relative Weight (%) 12.9		12.9	7.5	19.8	18.2	8.6	11.3	21.7
Rank Order		4	7	2	3	6	5	1

тоцинополь	weight lactor	moonity	ion
Control	7	8	4
Reliability	9	4	0
Simplicity	6	1	0
Impact Dampening	4	0	0
Assembly	6	0	1
Innovative	3	2	0
Cost effective	1	2	0
Safety	7	8	8
Machinability	2	0	2
Raw score (125	53)	162	94

			Engineering Characteristics					
Improvement direction		Ť	Ť	t	Ť	Ť	Ļ	Ť
Units		# of extremities	in	in*lbf	in*lbf, lbf	in	in	
Customer Requirements	Importance weight factor	Driver Mobility	Rider size accommodat ion	Driver Input	Rover Output	Rider position height	Turning Radius	Rover Stability
Control	7	8	4	8	8	4	8	8
Reliability	9	4	0	4	4	2	4	8
Simplicity	6	1	0	4	4	0	1	4
Impact Dampening	4	0	0	2	8	0	0	8

Assembly	6	0	1	8	4	1	2	2
Innovative	3	2	0	8	4	0	1	4
Cost effective	1	2	0	8	8	0	0	4
Safety	7	8	8	4	4	8	4	8
Machinability	2	0	2	8	4	0	0	2
Raw score (12	53)	162	94	248	228	108	141	272
Relative Weigh	t (%)	12.9	7.5	19.8	18.2	8.6	11.3	21.7
Rank Order		4	7	2	3	6	5	1

Rankings

Ranks to be used in determining following selection methods:

- 1. Rover Stability
- 2. Driver Input
- 3. Rover Output
- 4. Driver Mobility
- 5. Turning Radius
- 6. Rider Position Height
- 7. Rider Size Accommodation

Pugh Charts

• The ranking derived from the House of Quality are used to cross compare concepts

Front Suspension								
		Concepts						
Selection Criteria	Datum	Independent Suspension fork	Ski Fork	Rigid Bi- Wheel Fork	Independent Linkage Fork			
Rover Stability	Rockshox recon	+	+	+	+			
Driver Input	suspension fork	-	-	-	-			
Rover Output	a	+	-	-	-			
Driver Mobility		S	S	-	+			
Turning Radius	V	+	S	S	-			
Rider position height		S	S	S	S			
Rider Size Accommodation		S	S	S	S			
# pluses		3	1	1	2			
# minuses		1	2	3	3			

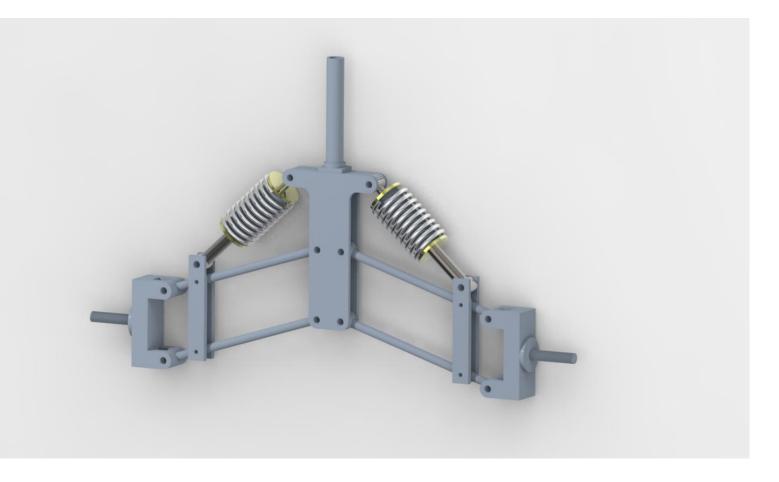
Pugh Charts

• The ranking derived from the House of Quality are used to cross compare concepts

Front Suspension								
		Concepts						
Selection Criteria	Datum	Independent Suspension fork	Ski Fork	Rigid Bi- Wheel Fork	Independent Linkage Fork			
Rover Stability	Rockshox recon	+	+	+	+			
Driver Input	suspension fork	-	-	-	-			
Rover Output	a	+	-	-	-			
Driver Mobility		S	S	-	+			
Turning Radius	•	+	S	S	-			
Rider position height		S	S	S	S			
Rider Size Accommodation		S	S	S	S			
# pluses		3	1	1	2			
# minuses		1	2	3	3			

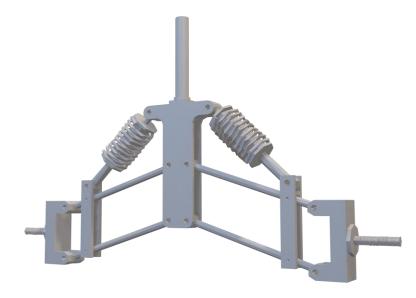
Front Suspension				
	Concepts			
Selection Criteria	Datum	Ski Fork	Rigid Bi- Wheel Fork	Independent Linkage Fork
Rover Stability	Independent Suspension fork	-	-	+
Driver Input		-	-	-
Rover Output		-	-	-
Driver Mobility		S	-	S
Turning Radius		S	S	-
Rider position height		S	S	S
Rider Size Accommodation		S	S	S
# pluses		0	0	1
# minuses		3	4	3

Selected Concepts


Phillip Dimacali

FAMU-FSU Engineering

Department of Mechanical Engineering


Front Independent Suspension Fork

- Suspended, Symmetrical 4-bar double-rocker
- 4-bar double rocker for steering input mechanism

Suspension Fork Refinement

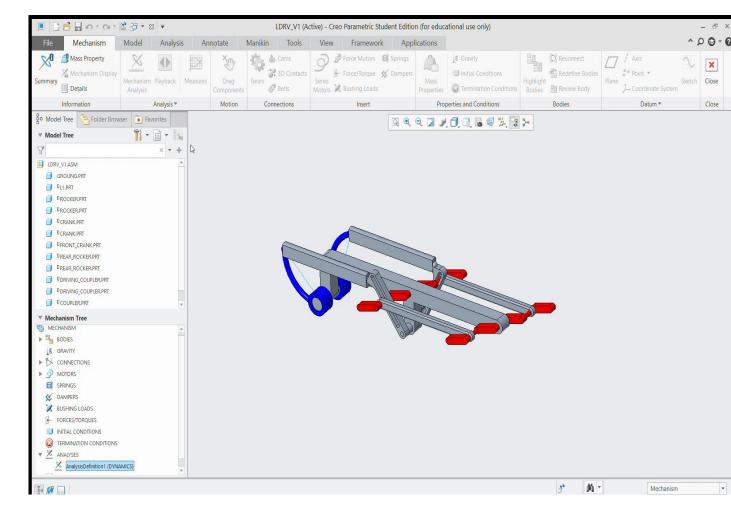
Structural Analysis:

- Loading Characteristics on Joints and Linkages
- Rider height considering spring displacement

Machine Design:

- Integrating fork with steering system
- Specifying components (bearings, coil spring, etc.)

Linkage Drivetrain

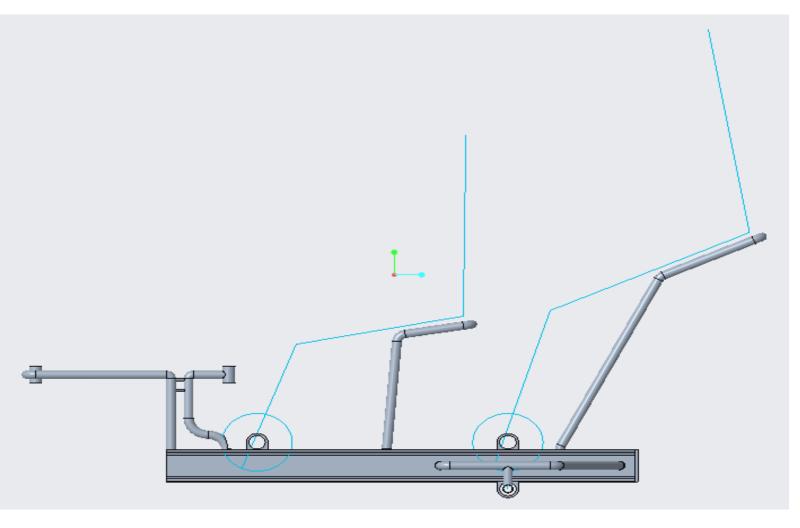

Blue component: Ratcheting (or one-way) mechanism

 Transmits torque to axle shaft only propelling vehicle forward

Red component: Crank for driver pedal input

Refinement:

- Determine ratcheting or one-way mechanism (considering one-way bearings)
- Design slot for constant angular velocity during power stroke given constant input
- Integrate system into chassis


Variable Height Driver Layout

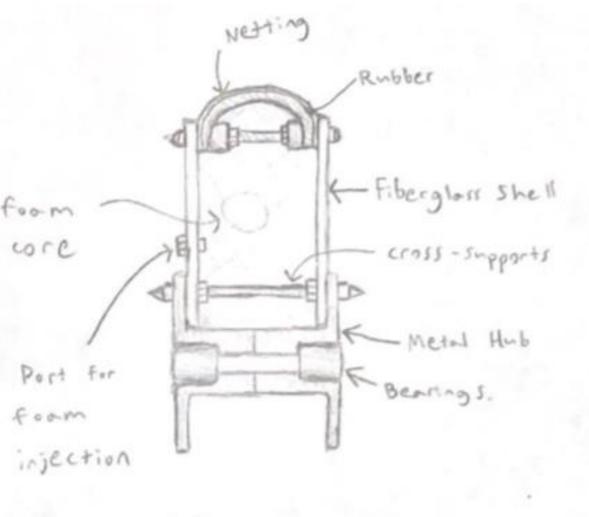
Considerations:

- Rider Dimensions
- Component integration
- Size Restrictions
- Design for Manufacturing and Assembly

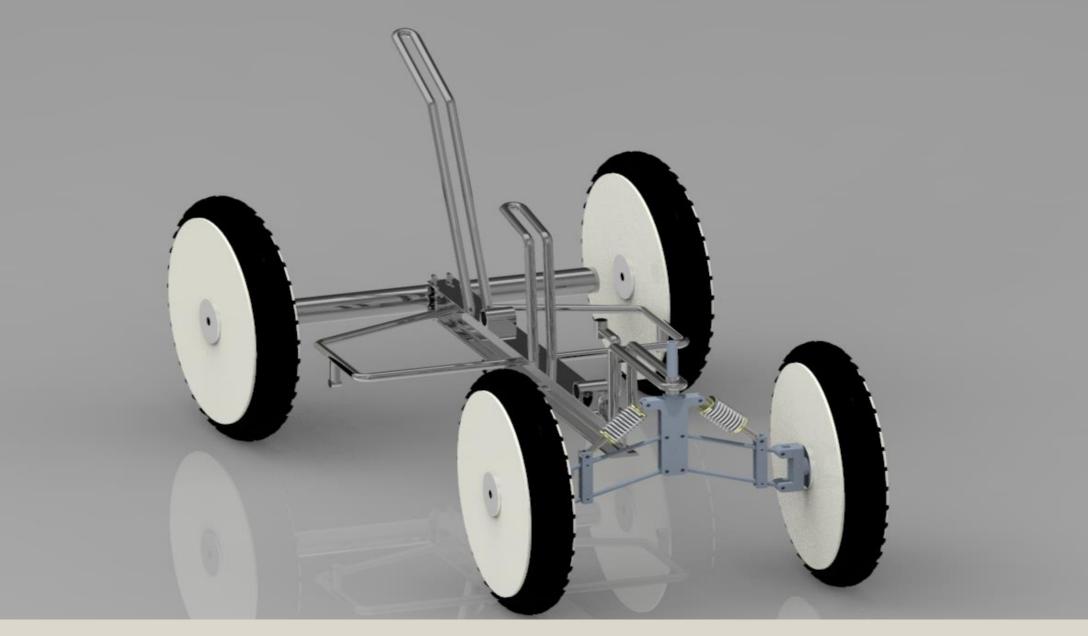
Refinement:

- Structural analysis
- FEA considering varying loads
- Determination of fixtures (weld, through bolt, etc.)
- Make rover modular

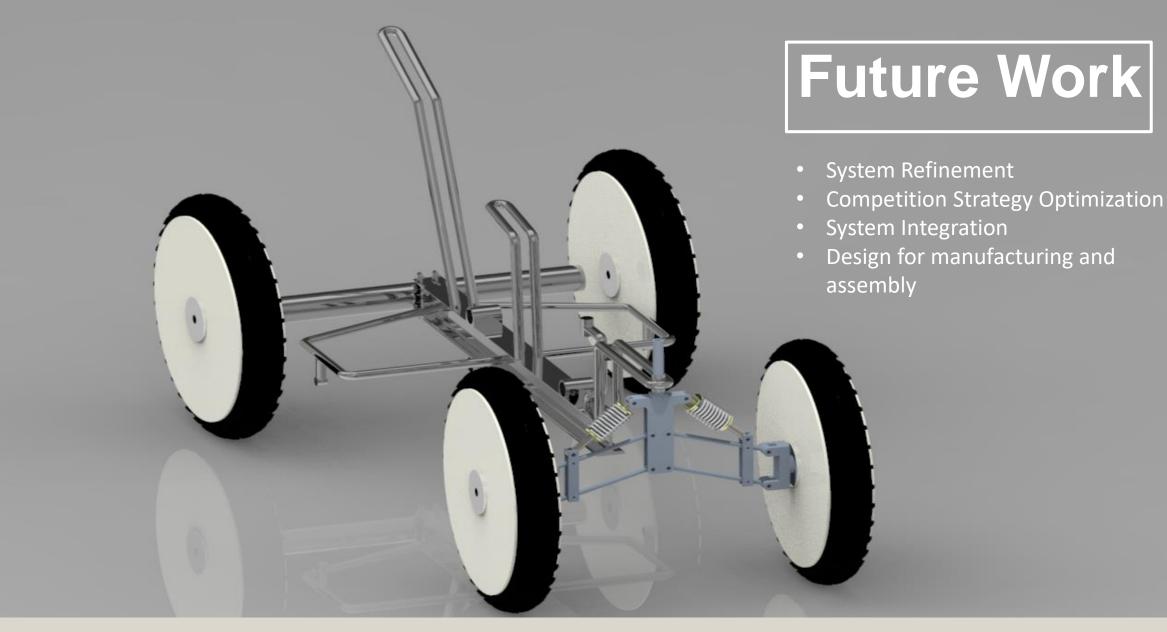
Department of Mechanical Engineering



Foam Core Wheels


Refinement:

- Foam Core testing
 - Foam core dog bone compression test
- Structural analysis
- Design for manufacturing and assembly
- Material and component selection



Department of Mechanical Engineering

References

National Aeronautics and Space Administration. (2020). Human Exploration Rover Challenge: 2020 Guidebook. NASA Human Exploration Rover Challenge: 2020 Guidebook. Alabama, United States of America.

Contact Information

Tavares Butler tlb16b@my.fsu.edu Phillip Dimacali pmd15@my.fsu.edu Jessica Meeker jtm17m@my.fsu.edu Lazaro Rodriguez lar15b@my.fsu.edu Jerald Yee jty16b@my.fsu.edu

If I have seen further than others, it is by standing upon the shoulders of giants. ~ Sir Isaac Newton

