EML4551-2

TEAM: 516 JACOB HACKETT CALEB JANSEN NOAH LANG KYLE NULTY HANNAH RODGERS

NASA Marshall Space Flight Center LSS Assembly Tool Team 516

Jacob Hackett Controls Engineer

Caleb Jansen Communications Engineer

Noah Lang Vehicle Design Engineer

Kyle Nulty Logic and Processing Design Engineer

Hannah Rodgers Robotic Design Engineer

Advisor and Sponsor

Faculty Advisor: Dr. Christian Hubicki FAMU-FSU College of Engineering

Project Sponsor: Justin Rowe NASA Marshall Space Flight Center

Hannah Rodgers

Hannah Rodgers

Project Scope:

Objective: Move the LSS payload around the lunar surface

Develop a full-scale simulation and scaled prototype of the assembly tool to transport modules of the life support system on the surface of the Moon.

Identify methodology for scalability of the LSS Assembly Tool.

TAMU-FSU Engineering

Brainstorming Medium Fidelity

Kyle Nulty

8

Medium Fidelity

- Wheeled Climbing Robot
 - Legs are wheeled
 - Grippers to secure payload

- Forklift
 - Reaches Payload from ground level

Scissor Link Vehicle

•

- Large platform for Payload
- Arm to place on platform

- Shipyard Crane
 - Stable
 - Secures Payload
 - Motion Done by Nasa

- Wall-E Robot
 - Treaded
 - Gripper for Payload
 - Stores inside its body

Kyle Nulty

High Fidelity

- Smart Truck
 - Arms used to grab the payload
 - Gyroscope to not tip the contents
 - Secures on its back
 - Payload has two secure points
 - Wheeled

FAMU-FSU Engineering

High Fidelity

- Portable Crane
 - Crane used to grab
 the payload
 - Secures on vehicle
 - Crane retracts during
 movement
 - Payload has one secure point
 - Wheeled

Kyle Nulty

High Fidelity

- RHex Robot
 - Utilizes a gait for movement
 - Climbs up lander to secure payload
 - Legs comprised of spring dampers

					Comparison Matrix					
	Lift	Size	Power	Assembly	Close Control Proximity	Weight	Regolith	Solution	Control Mechanism	
										Total
Lift Payload	-	1	0	1	1	1	1	1	1	7
Size	0	-	0	1	1	1	0	1	1	5
Power Delivery	1	1	-	1	1	1	1	1	1	8
Minimal Assembly	0	0	0	-	0	0	1	1	0	2
Close Control Proximity	0	0	0	1	-	0	0	1	0	2
Weight	0	0	0	1	1	-	0	1	0	3
Regolith - manuver	0	1	0	0	1	1	-	1	1	5
Unique Solution	0	0	0	0	0	0	0	-	0	0
Controller Mechanism	0	0	0	1	1	1	0	1	-	4
Total	1	3	0	6	6	5	3	8	4	

				(Comparison Matrix					
	Lift	Size	Power	Assembly	Close Control Proximity	Weight	Regolith	Solution	Control Mechanism	
										Total
Lift Payload	-	1	0	1	1	1	1	1	1	7
Size	0	-	0	1	1	1	0	1	1	5
Power Delivery	1	1	-	1	1	1	1	1	1	8
Minimal Assembly	ο	0	0	-	0	0	1	1	0	2
Close Control Proximity	0	0	0	1	-	0	0	1	0	2
Weight	0	0	0	1	1	-	0	1	0	3
Regolith - manuver	0	1	0	0	1	1	-	1	1	5
Unique Solution	0	0	0	0	0	0	0	-	0	0
Controller Mechanism	0	0	0	1	1	1	0	1	-	4
Total	1	3	0	6	6	5	3	8	4	

				(Comparison Matrix					
	Lift	Size	Power	Assembly	Close Control Proximity	Weight	Regolith	Solution	Control Mechanism	
										Total
Lift Payload	-	1	0	1	1	1	1	1	1	7
Size	0	-	0	1	1	1	0	1	1	5
Power Delivery	1	1	-	1	1	1	1	1	1	8
Minimal Assembly	0	0	0	-	0	0	1	1	0	2
Close Control Proximity	0	0	0	1	-	0	0	1	O	2
Weight	0	0	0	1	1	-	0	1	0	3
Regolith - manuver	0	1	0	0	1	1	-	1	1	5
Unique Solution	0	0	0	0	0	0	0	-	0	0
Controller Mechanism	0	0	0	1	1	1	0	1	-	4
Total	1	3	0	6	6	5	3	8	4	

												H	louse	of Quality													
Comparison														Engine	eerin	ig Cha	racteri	istics		_							
Companson	Improven	nent Direction	-	\uparrow	-	1	\uparrow	\uparrow	\downarrow	\downarrow	\uparrow	\uparrow	-	-	\uparrow	-	-	↑	-	-	-	-	\uparrow	\downarrow	1	-	-
Matrix															. 2									,		SAE	
Ινιατικ		Units	kW	h	h	m	m	m	ms	ms	m	m	deg	Nm	km ⁻	deg	deg	m	N	deg	Nm	Nm	kg	m^	m	Level 1	V
			÷		_	tion		_				e		a ⊀	Ē	H	ange		Р	-	s 4	o to			ed		
		Importance	0 Me	wer	awe	nica	ign	gna	gna	gna	nal	shic	jc	Aoti Aoti	rrai	d	5	ļ	loa	loa	tatio I	slati	B		trol	È	ort
House of	Customer Requirement	Weight Factor	Transmit P	Store Po	Receive Po	Send Commu Signal	Broadcast S	Receive Si	Process Si	Identify Si	Detect Sig	Translate V	Rotate Vel	Convert Elect Rotational N	Traverse Te	Take Angle	Indicate Angle	Translate Pa	Secure Pay	Rotate Pay	Convert Elect Payload Roi	Convert Elect Payload Tran	Lift Paylo	Size	Remote Con	Autono	Power P
Quality	Lift Payload	7	9	1	9	0	0	0	0	0	0	0	0	0	0) 5	0	9	9 9	9	9	9	9	0	0	0	0
	Size	5	0	0	0	0	0	0	0	0	0	5	5	3	5	5 0				0	0	0	0	9	0	1	1
	Power Delivery	8	9	5	9	0	0	0	1	1	0	7	7	9	1	1	1	. ;	7 3	7	9	9	3	1	0	0	9
Duch	Minimal																										
Pugn	Assembly	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C) (0	0	0	0	0	5	0	0	5
Charts	Close Control Proximity	2	0	0	0	1	1	1	1	1	1	9	9	0		3 3	3			0	0	0	0	0	0	9	0
Onarto	Weight	3	0	0	0	0	0	0	0	0	0	9	9	5	9		1			0	0	0	0	5	0	0	0
	Regolith	5	0	0	0	0	0	0	0	0	0	9	9	3	9) (3	(0 0	0	0	0	0	0	0	0	0
Analytical	Unique Solution	0	0	0	0	0	o	0	0	0	0	9	0	0	g	0	c	9	9 3	0	0	0	9	1	1	0	0
/ mary roan	Control																										
Hierarchy	Mechanism Baw Score	2189	0 135	0 47 1	35	9 38	9 38	9 38	0 10	14	9 38	175	175	117	127	8 9	32	150	91	123	135	135	91	78	9 36	9 59	87
	Relative Weight	2105	###	#### #	###	1.74	###	###	###	###	###	###	###	5.34	####	####	1.46	###	####	###	6.17	6.17	####	###	1.64	2.70	3.97
Process		Rank Order	4	17	4	18	18	18	25	24	18	1	1	10	8	3 14	23		3 11	9	4	4	11	15	22	16	13

												Н	louse	of Quality													
Comparison														Engine	eering	g Cha	racter	istics	5								
Companson	Improven	nent Direction	-	\uparrow	-	\uparrow	\uparrow	\uparrow	\downarrow	\downarrow	\uparrow	\uparrow	-	-	\uparrow	-	-	\uparrow	-	-	-	-	\uparrow	\downarrow	\uparrow	-	-
Matrix																										SAE	
IVIALITX		Units	kW	h	h	m	m	m	ms	ms	m	m	deg	Nm	km [*]	deg	deg	m	N	deg	; Nm	Nm	kg	m²	m	Level 1	V
	Customer	Importance	Power	ower	Power	unication al	Signal	Signal	Signal	Signal	ignal	Vehicle	ehicle	ctricity to Motion	Terrain	e Input	le Change	avload	avload	ayload	ctricity to otation	ctricity to Inslation	load	du.	ntrolled	omγ	Port
House of	Requirement	Weight Factor	Transmit	Store P	Receive	Send Comm Sign	Broadcast	Receive S	Process:	Identify (Detect S	Translate	Rotate V	Convert Elec Rotational	Traverse ⁻	Take Angl	Indicate Ang	Translate P	Secure P.	Rotate Pa	Convert Elec Payload R	Convert Elec Payload Tra	Lift Pay	Size	Remote Co	Auton	Power
Quality	Lift Payload	7	9	1	9	0	0	0	0	0	0	0	0	0	0	5	0) 9	9 9	9 9	9 9	9	9	0	0	0	0
	Size	5	0	0	0	0	0	0	0	0	0	5	5	3	5	0	0					0	0	9	0	1	1
	Power Delivery	8	9	5	9	0	0	0	1	1	0	7	7	9	1	1	1	. 7	7 3	3 7	7 9	9	3	1	0	0	9
Pugh	Minimal Assembly	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					0	0	5	0	0	5
Charts	Close Control Proximity	2	0	0	0	1	1	1	1	1	1	9	9	0	5	3	3	3 (0	0	0	0	9	0
	Weight	3	0	0	0	0	0	0	0	0	0	9	9	5	9	0	1		9 (0 0	0 0	0	0	5	0	0	0
	Regolith	5	0	0	0	0	0	0	0	0	0	9	9	3	9	0	3	3 (0 0	0 0	0 0	0	0	0	0	0	0
Analytical	Unique Solution	0	0	0	0	0	0	0	0	0	0	9	0	0	9	0	C) 9	9 3	3 0	0 0	0	9	1	1	0	O
History	Control Mechanism	4	0	0	0	9	9	9	0	1	9	1	1	0	3	9	0		1 :	L 1	L C	0	1	0	9	9	O
петагопу	Raw Score	2189	135	47 :	135	38	38	38	10	14	38	175	175	117	127	85	32	150	0 9:	123	3 135	135	91	78	36	59	87
Dragon	Relative Weight	%	####	#### :	###	1.74	####	####	####	####	####	####	####	5.34	####	####	1.46	5 ###	# ####	####	6.17	6.17	####	####	1.64	2.70	3.97
PIOCESS		Rank Order	4	17	4	18	18	18	25	24	18	1	1	10	8	14	23	3	3 11	1 9	9 4	4	11	15	22	16	13

												H	louse	of Quality														
Comparison														Engine	erir	ng Cha	aracte	ristic	s									
Companson	Improven	nent Directior	-	\uparrow	-	1	\uparrow	\uparrow	\downarrow	\downarrow	\uparrow	\uparrow	-	-	↑	-	-	↑	· -		-	-	-	\uparrow	\downarrow	\uparrow	-	-
Matrix															. :	2									2		SAE	
Ινιατικ		Units	kW	h	h	m	m	m	ms	ms	m	m	deg	Nm	km	deg	deg	m	n N	d	eg	Nm	Nm	kg	m-	m	Level 1	
			ъ.		L.	ation	a	_	_	_	_	cle	e	ity to ion	. <u>e</u>	Ħ	- Duck		8 3		g	ty o to	ity to tion			lled		
		Importance	8	Mel	š	- nic	Sigr	gnä	gu	gu	gna	ehid	hid	dot Mot	erra	Ē	t d			ĎĂ.	e l	tati tati	trici Islat	pad		fro	È	ort
House of	Customer Requirement	Weight Factor	Transmit F	Store Po	Receive P	Send Commu Signa	Broadcast	Receive S	Process S	Identify S	Detect Si	Translate V	Rotate Ve	Convert Elect Rotational P	Traverse T	Take Angle	Indicate And		Sacura Da	Secure Pa	Rotate Pa	Convert Elect Payload Ro	Convert Elect Payload Trar	Lift Paylo	Size	Remote Cor	Autono	PowerF
Quality	Lift Payload	7	9	1	9	0	0	0	0	0	0	0	0	0	(0 5	5	0	9	9	9	9	9	9	0	0	0	C
	Size	5	0	0	0	0	0	0	0	0	0	5	5	3		5 0		0	0	0	0	0	0	0	9	0	1	1
	Power Delivery	8	9	5	9	0	0	0	1	1	0	7	7	9		1 1		1	7	3	7	9	9	3	1	0	0	9
Pugh	Minimal	2			0	0	0	0	0	0	0	0	0	0			,	_			0	0	0	0	5	0	0	_
Charts	Close Control	2	0	0	0	1	1	1	1	1	1	9	9	0			, ,	3	0	_	0	0	0	0	0	0	9	
Onarto	Weight	3	0	0	0	0	0	0	0	0	0	9	9	5)	1	9	0	0	0	0	0	5	0	0	0
	Regolith	5	0	0	0	0	0	0	0	0	0	9	9	3	9	9 0)	3	0	0	0	0	0	0	0	0	0	O
Analytical	Unique Solution	C	0	0	0	0	0	0	0	0	0	9	0	0	9	ə ()	0	9	3	0	0	0	9	1	1	0	c
Hieroroby	Control Mechanism	4	0	0	0	9	9	9	0	1	9	1	1	0		3 9)	0	1	1	1	0	0	1	0	9	9	C
пеасну	Raw Score	2189	135	47	135	38	38	38	10	14	38	175	175	117	127	7 85	5 3	2 15	0 9	1 1	23	135	135	91	78	36	59	87
Drococc	Relative Weight	%	####	####	###	1.74	####	####	####	###	####	####	####	5.34	####	####	1.4	6 ##	# ##	# #	##	6.17	6.17	####	####	1.64	2.70	3.97
FIUCESS		Rank Order	4	17	4	18	18	18	25	24	18	1	1	10	8	3 14	2	3	3 1	.1	9	4	4	11	15	22	16	13

												H	louse	of Quality													
Comparison														Engine	erin	g Cha	racteri	stics									
Companson	Improven	nent Direction	-	\uparrow	-	\uparrow	\uparrow	\uparrow	\downarrow	\downarrow	$ \uparrow $	\uparrow	-	-	\uparrow	-	-	\uparrow	-	-	-	-	\uparrow	\downarrow	\uparrow	-	-
Matrix					.										. 2									2		SAE	
Ινιατικ		Units	kW	h	h	m	m	m	ms	ms	m	m	deg	Nm	km	deg	deg	m	N	deg	Nm	Nm	kg	m ⁻	m	Level 1	V
		Importance	ower	wer	ower	inication I	Signal	ignal	ignal	ignal	gnal	ehicle	hicle	tricity to Motion	errain	linput	e Change	ayload	yload	yload	tricity to tation	tricity to Islation	oad		ntrolled	μλ	ort
House of	Customer Requirement	Weight Factor	Transmit P	Store Po	Receive P	Send Commu Signa	Broadcast	Receive S	Process S	Identify S	Detect Si	Translate V	Rotate Ve	Convert Elect Rotational N	Traverse T	Take Angle	Indicate Angl	Translate Pa	Secure Pa	Rotate Par	Convert Elect Payload Ro	Convert Elect Payload Trar	Lift Paylo	Size	Remote Cor	Autono	Power F
Quality	Lift Payload	7	9	1	9	0	0	0	0	0	0	0	0	0	0	5	0	9	9	9	9 9	9	9	0	0	0	0
	Size	5	0	0	0	0	0	0	0	0	0	5	5	3	5	0			0	0		0	0	9	0	1	1
	Power Delivery	8	9	5	9	0	0	0	1	1	0	7	7	9	1	1	1	7	3	7	/ 9	9	3	1	0	0	9
Pugh	Minimal Assembly	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0) 0	0	0	5	0	0	5
Charts	Close Control Proximity	2	0	0	0	1	1	1	1	1	1	9	9	0	5	3	3	C	0	0) 0	0	0	0	0	9	0
	Weight	3	0	0	0	0	0	0	0	0	0	9	9	5	9	0	1	9	0	0	0 0	0	0	5	0	0	0
	Regolith	5	0	0	0	0	0	0	0	0	0	9	9	3	9	0	3	0	0	0	0 0	0	0	0	0	0	O
Analytical	Unique Solution	0	0	0	0	0	о	0	0	о	0	9	0	0	9	0	0	9	3	0	0	0	9	1	1	0	o
,	Control												-														
Hierarchy	Baw Score	2189	135	47 1	35	38	38	38	10	14	38	175	175	117	127	85	32	150	91	123	135	135	91	78	36	59	87
	Relative Weight	%	####	#### #	###	1.74	#### :	####	###	####	###	####	####	5.34	####	####	1.46	###	####	####	6.17	6.17	####	####	1.64	2.70	3.97
Process		Rank Order	4	17	4	18	18	18	25	24	18	1	1	10	8	14	23	3	11	9	4	4	11	15	22	16	13

Comparison Matrix House of Quality Pugh Charts Analytical Hierarchy Process

Selection Criteria	ATHLETE	Wheeled Climbing Robot	Forklift	Shipyard Crane	Wall-E Rover	Scissor Link Vehicle	Smart Truck with Arms	Portable Crane	RHex Robot
Lift Payload		-	+	+	-	+	+	+	-
Size		+	+	-	+	+	+	-	+
Simulation Model		s	+	+	-	+	+	-	s
Power Delivery		s	+	+	s	+	+	+	-
Minimal Assembly		+	+	-	S	+	+	-	+
Close Control Proximity	Datum	S	+	+	S	+	+	+	+
Weight		+	+	-	+	+	S	-	+
Regolith - manuver		+	+	S	+	s	+	S	-
Unique Solution		+	-	+	+	+	+	-	+
Controller Mechanism		S	+	+	S	+	+	+	+
# of Pluses		5	9	6	4	9	9	4	6
# of Minuses	;	1	1	3	2	0	0	5	3

House of Quality Pugh Charts Analytical Hierarchy Process

Selection Criteria	Forklift	Smart Truck with Arms	Scissor Link Vehicle
Lift Payload		+	-
Size		-	S
Simulation Model		s	-
Power Delivery		s	-
Minimal Assembly		s	-
Close Control Proximity	Datum	-	S
Weight			S
Regolith - manuver		s	s
Unique Solution		+	+
Controller Mechanism		S	-
# of Pluses		1	1
# of Minuses		3	5

The Selection Process

Noah Lang

FAMU-FSU Engineering

FAMU-FSU Engineering

- Final decision Pugh Chart
- Eliminated Scissor Link Vehicle
- Arrived at final design selection: "Truck" with arms

24

Selection Criteria	Forklift	Smart Truck with Arms	Scissor Link Vehicle
Lift Payload		+	-
Size		-	S
Simulation Model		s	-
Power Delivery		s	-
Minimal Assembly		s	-
Close Control Proximity	Datum	-	S
Weight			S
Regolith - manuver		s	s
Unique Solution		+	+
Controller Mechanism		s	-
# of Pluses		1	1
# of Minuses	;	3	5

- Compared:
 - Material
 - Repairability
 - Durability
 - Reliability
 - Time to Produce
- Checked Consistency of Selected design
- Found unbiased design selection:
 - "Smart Truck"

Final Design Selection

Final Selected Design: Robotic Actuated Payload Transport Rover (RAPTOR)

- Four wheeled vehicle base
- Full suspension
- Tweels
- Platform to place Payload
- Arm to retrieve payload
 - Capable of 2
 Degrees of Freedom

Upcoming Work

- Bill of Materials
- Start of Initial Design
- Purchase of primary materials
- Presentation to NASA Sponsors and Stakeholders (11/22)
- Start simulation of parts and systems in our design in
 Simscape
- Start research into viability of regolith simulation
- Start work on poster for VDR3
- Draft a Spring project plan

EML4551-2

TEAM: 516 JACOB HACKETT CALEB JANSEN NOAH LANG KYLE NULTY HANNAH RODGERS

References

National Aeronautics and Space Administration . (1996, June 21). Structural Deisgn and Test Factors of Safety For Spaceflight Hardware. Huntsville, Alabama, USA.

Stone, R. B., & Wood, K. L. (2000). Development of a Functional. *Journal of Mechanical Design*, 359-370.

Shuttleworth, J. (2019, January 7). SAE Standards News: J3016 automated-driving graphic update. Retrieved from SAE International: https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic

Williams, D. R. (2016, May 19). The Apollo Lunar Roving Vehicle. Retrieved from The Apollo Program (1963 - 1972): https://nssdc.gsfc.nasa.gov/planetary/lunar/apollo_lrv.html

Meyer, C. (2003). Lunar Regolith. Retrieved from NASA Lunar Petrographic Educational Thin Section Set: https://curator.jsc.nasa.gov/lunar/letss/regolith.pdf

FAMU-FSU Engineering

(**Y**)

SAE Level 1 Autonomy Graphic

30

Existing Technology

ATHELE Rover from JPL

Lunar Rover Vehicle from Apollo Missions

Regolith

Properties

- Thickness of about 5 m to 10 m depending on location
- Fine gray soil, with rock fragments throughout
- Constantly bombarded by micrometeorites and solar wind irradiation
 - Glass can be found at the bottom of craters

Customer Need Table

Questions	Response	Interpretation
1. How big is the payload we	"300 kg in earth's gravity"	The LSS assembly tool will
will be lifting?		need to lift a payload with a
		mass of 300 kilograms.
2. What are the size	"4m x 4m"	The LSS assembly tool will
constraints of the system?		need to fit in an area of 16
		meters squared, fully
		assembled.
3. What scale of a model do	"I would like this to be truly	The simulation will need to
you expect?	parametric which I can use a	have various scaled models
	slider gain to scale down the	available for the customer.
	model."	
4. How detailed of a	"As a customer I would	A full physics model is
simulation?	answer this with I want a full	needed for the simulation- it
	animated simulation	must lift and transport the
	including full physics model."	payload.
5. Do we need to worry about	"This is going to be heavy	Powering the LSS assembly
how to power the system?	machinery on the moon so I	tool will be the responsibility
	am looking for you to	of the team.
	determine how this would be	
	powered. I assume solar."	
6. Do you want it to be fully	"As a customer of course, I	Upon arrival to the Moon, the
assembled when we get	want it fully assembled. My	LSS assembly tool will be
there?	expectation would be that the	able to begin
	any assembly needed would	lifting/transporting payloads,
	only require the hand tools."	disregarding minor hand tool
		adjustments.

7. Will the operator be on the	"The operator would be on	The operator of the LSS
Moon or on Earth?	same 'planet' as the machine"	assembly tool will be
		relatively close to the system.
8. Do we have mass	"Less than 805 kg. No	The LSS assembly tool will
constraints? Material	specific requirements on	be less than 805 kilograms of
requirements?	materials."	mass. There are no specific
		materials that need be used.
9. Will the system need to lift		
the payload and then attach it		
to another part of the lunar		
base (a docking mechanism)?		
10. Besides lifting and		
transporting the payload,		
should the LSS assembly tool		
do anything else?		
11. What range do you		
desire?		
12. How high is the platform		
that we will be moving the		
payload from/to?		
13. Are you concerned about	"TBD, assume yes until	Yes, the design will account
regolith?	clarified"	for locomotion over regolith.
14. Is there a specific	"One that is industry friendly	Until further notice, the team
program or software package	and can be shared if	will use the simulation tool
the simulation should be done	necessary."	recommended by our faculty
in?		adviser.
15. Is there a preferred	"No."	The control system to be used
controller for the "driver" to		by the driver is at the
use?		discretion of the team.
17. Is there a concern for the	"Yes, but this will be	This is not the current focus
time needed to move a	determined later."	of the design.
payload?		

System Functional Decomposition												
Function	Measure	Transfer	Control Magnitude	Provide	Convert							
Transmit Power		+										
Store Power				+								
Receive Power		+										
Regenerate Power			+		+							
Send Communication Signals		+										
Broadcast Signal		+	+									
Receive Signal		+										
Process Signal		+	+		+							
Identify Signal	+	+										
Detect Signal	+	+										
Translate Vehicle		+										
Rotate Vehicle		+										
Convert Electricity to Translational Motion					+							
Convert Electricity to Rotational Motion					+							
Traverse Terrain		+										
Take Angle Input	+											
Indicate Angle Change		+										
Translate Payload		+										
Secure Payload		+										
Rotate Payload		+										
Convert Electricity to Payload Rotation					+							
Convert Electricity to Payload Translation					+							
Lift Payload		+										

🐨 🚭 FAMU-FSU Engineering

Flow Chart of Motion

Flow Chart of Energy

Flow Chart of Payload

Torque

---- Force

Flow Chart of Communication

🛞 🚱 FAMU-FSU Engineering

Targets

Attributes	Target								
	(Simulation)								
Transmit Power	4kW								
Store Power	1-hour max stress operation / 8-hours normal operations								
Receive Power	16-hour recharge time								
Send Communication Signal	100 m								
Broadcast Signal	100 m								
Receive Signal	100 m								
Process Signal	0.250 ms (Response Time)								
Identify Signal	0.250 ms (Response Time)								
Detect Signal	100 m								
Translate Vehicle	100 m								
Rotate Vehicle	360°								
Convert Electricity to Rotational Motion	500 Nm								
Traverse Terrain	5 km ²								
Take Angle Input	0-360°								
Indicate Angle Change	0-360°								
Translate Payload	2 m								
Secure Payload	1500 N								
Rotate Payload	360°								
Convert Electricity to Payload Rotation	500 Nm								
Convert Electricity to Payload Translation	500 Nm								
Lift Payload	300kg								
Size	16m ²								
Remote Controlled	100m								
Autonomy	SAE Level 1								
Powerport	120V/230V								
-									

Attributes	Metric (Simulation/Prototype)
Transmit Power	Simscape/Multimeter. Based off requirement for electric
	motor of typical forklift and requirement to lift 300 kg
	payloads
Store Power	Simscape/Multimeter, Clock
Receive Power	Simscape/Multimeter, Clock
Send Communication Signal	Simscape/Test signal at varies range until no signal is found

Current Bill of Materials

T516: LSS Assembly Tool													
	Bill of Materials												
Category	lajor Componer	Quantity	Purpose	Part Number	Purchase Source		Price	Ordered?	Arrived				
Yehicle	Wheel	4	ground	3669A	https://traxxas.com/products/parts/ 3669A	\$	62.00	0	0				
Vehicle	Control Arm	4	Connect rover to hub	9056K89	https://www.momaster.com/structur al-framing-tubing	\$	23.58	0	No				
Yehicle	Wheel Hub	4	Mount wheel	1654	https://traxxas.com/products/parts/1 854	\$	4.00	0	No				
Yehicle	Strut/Shock	4	Control Motion of wheel rebound	B07P5X2H8F	https://www.amazon.com/FASTAC E-Mountain-Bioyole-Shook- 160x42mm/dp/B07P5X2H8F/refelp_ 6389390011-132s=outd5o243045 76st=1-13	\$	100.00	0	No				
Yehicle	Chassis	1	Body of vehicle	4698T32 4698T112 9056K89	https://www.momaster.com/structur al-framing-tubing	\$	286.32	0	No				
Vehicle	Motor	2	Motion of wheel			\$	600.00	0	No				
Robotic Arm	Base Motor	2	Motion for each linkage	563-2085-ND	https://www.digikey.com/short/pddb 8b	\$	75.50	0	No				
Robotic Arm	Base Gear Train	1	Higher torque	276-2169	https://www.robotshop.com/en/vex- gear-kit.html	\$	12.99	0	No				
Robotic Arm	Arduino Microcontroller	1	Controlling arm	*****	https://store.arduino.co/usa/mega- 2560-r3	\$	38.50	0	No				
Robotic Arm	Aluminum Linkages	1	Linkages of Arm	9146T64	https://www.mcmaster.com/9146t64- 9146T641	\$	3.41	0	No				
Robotic Arm	Gripper Linkages	2	Grab payload	9146T11	https://www.mcmaster.com/9146t11- 9146T113	\$	1.80	0	No				
Robotic Arm	Gripper Motor	1	To grab the payload	1738-1270-ND	https://www.digikey.com/short/pdd9 2w	\$	7.62	0	No				
Robotic Arm	Gripper Motor Gears	1	Get necessary torque	FIT0098-ND	https://www.digikey.com/product- detail/en/dfrobot/EIT0098/EIT0098- ND/7597183	\$	13.52	0	No				
Robotic Arm	Weight	1	Scaled payload	301837041	https://www.homedepot.com/p/2-in- 8-4-in-8-8-ft	\$	3.27	0	No				
Controls	MEMS	1				\$	-	0	No				
Controls	IR Distance Sensor	4	Collision/Haz ard Detection			\$	40.00	0	No				
Controls	Radio Receiver/Transmit ter Pair	1	Control device through user			\$		1	Yes				
Computation/Signal Processing	Arduino Microcontroller	1	Includes ADC and processor necessary for calculations	*****	https://store.arduino.cc/usa/mega- 2560-r3	\$	38.50	1	Yes				
Computation/Signal Processing	Motor Drivers	2	Control Motors	L298N	https://www.amazon.com/Stepper- Driver-H-bridge-Controller- Arduino/dp/B07SGX6YB7	\$	11.98	0	No				
Simulation	Matlab Simscape	NA	Simuation of vehicle	NA	NA	\$	-	1	Yes				
Simulation	Multisim	NA	Simuation of vehicle	NA	NA	\$		1	Yes				
Electronics	Wires (Shielded)	5	Electricity Conductor	TE-273-004	hop/item.asps/24awg-shielded-4- conductor-stranded-hookup-wire-by- the-foot/2024/	\$	0.39	0	No				

				T516: L	SS Assembly Too	I			
	Category	Major Component	Quantity	Purpose	Part Number	Purchase Source	Price	Ordered?	Arrived
	Vehicle	Wheel	4	Adhesion to ground	3669A	https://traxxas.com/products/parts/366 <u>9A</u>	\$ 62.00	0	0
	Vehicle	Control Arm	4	Connect rover to hub	9056K89	https://www.mcmaster.com/structural- framing-tubing	\$ 23.58	0	No
	Vehicle	Wheel Hub	4	Mount wheel to arm	1654	https://traxxas.com/products/parts/165 4	\$ 4.00	0	No
	Vehicle	Strut/Shock	4	Control Motion of wheel rebound	B07P5X2H8F	https://www.amazon.com/FASTACE- Mountain-Bicycle-Shock. 160x42mm/dp/B07P5X2H8F/ref=lp_6389 390011_1_13?s=outdoor- recreation&ie=UTF8&qid=1572483457&s r=1-13	\$ 100.00	0	No
	Vehicle	Chassis	1	Body of vehicle	4698T32 4698T112 9056K89	https://www.mcmaster.com/structural- framing-tubing	\$ 286.32	0	No
	Vehicle	Motor	2	Motion of wheel			\$ 600.00	0	No
	Robotic Arm	Base Motor	2	Motion for each linkage	563-2085-ND	https://www.digikey.com/short/pddb8b	\$ 75.50	0	No
	Robotic Arm	Base Gear Train	1	Higher torque	276-2169	https://www.robotshop.com/en/vex- gear-kit.html	\$ 12.99	0	No
•	Robotic Arm	Arduino Microcontroller	1	Controlling arm	8058333490083	https://store.arduino.cc/usa/mega-2560- <u>r3</u>	\$ 38.50	0	No
	Robotic Arm	Aluminum Linkages	1	Linkages of Arm	9146T64	https://www.mcmaster.com/9146t64- 9146T641	\$ 3.41	0	No
	Robotic Arm	Gripper Linkages	2	Grab payload	9146T11	https://www.mcmaster.com/9146t11-	¢ 4.00		

Some of the materials we expect to need, we already have- i.e. Arduino Mega

House of Quality																										
			Engineering Characteristics																							
Improve	ement Direction	-	↑	-	↑	↑	\uparrow	\downarrow	\leftarrow	↑	\uparrow	-	-	1	-	-	\uparrow	-	-	-	-	\uparrow	\downarrow	\uparrow	-	-
																								SAE		
	Units	kW	h	h	m	m	m	ms	ms	m	m	deg	Nm	km²	deg	deg	m	N	deg	Nm	Nm	kg	m ²	m	Level 1	۷
Customer	Importance	sm	e tor	ive	τŊΕ	d b	ive	ro ess	ify	sct Det	sla sla	te o	ert lec	rav rse	e a	ate ng	ra sla	ec Irec	tot ate	ert lec ici	ert lec lici	ay I	ize	e e	no ny	er ort
Requirement	Weight Factor		۸ ۱	Υυ		o a	ΥŪ	ığ.	t IC				<u>т ш < С</u>	= u		Þ٥		ר מ	<u>r</u> (0	<u>ت ا < ا</u>	<u>ت س < ۱</u>		S.	5	40-	<u>م</u> م
Lift Payload	7	9	1	9	0	0	0	0	0	0	0	0	0	(0 5	0	9	9	9	9	9	9	0	0	0	0
Size	_	_							_			_								_						
	5	0	0	0	0	0	0	0	0	0	5	5	3		50	0	0	0	0	0	0	0	9	0	1	1
Power Delivery	8	9	5	9	0	0	0	1	1	0	7	7	9		1 1	1	7	3	7	9	9	3	1	0	0	9
Minimal Assembly	2	0	0	0	0	0	0	0	0	0	0	0	0	(0 0	0	0	0	0	0	0	0	5	0	0	5
Close Control																										
Proximity	2	0	0	0	1	1	1	1	1	1	9	9	0	ļ	5 3	3	0	0	0	0	0	0	0	0	9	0
Weight	3	0	0	0	0	0	0	0	0	0	9	9	5	9	9 0	1	9	0	0	0	0	0	5	0	0	0
Regolith	5	0	0	0	0	0	0	0	0	0	9	9	3		9 0	3	0	0	0	0	0	0	0	0	0	0
Unique Solution	0	0	0	0	0	0	0	0	0	0	9	0	0	9	9 0	0	9	3	0	0	0	9	1	1	0	0
Control Mechanism	4	0	0	0	9	9	9	0	1	9	1	1	0	:	39	0	1	1	1	0	0	1	0	9	9	0
Raw Score	2189	135	47	135	38	38	38	10	14	38	175	175	117	12	7 85	32	150	91	123	135	135	91	78	36	59	87
Relative Weight	%	6.17	2.15	6.17	1.74	1.74	1.74	0.46	0.64	1.74	7.99	7.99	5.34	5.80	3.88	1.46	6.85	4.16	5.62	6.17	6.17	4.16	3.56	1.64	2.70	3.97
	Rank Order	4	17	4	18	18	18	25	24	18	1	1	10	8	8 14	23	3	11	9	4	4	11	15	22	16	13

Color Pallet

