

TEAM: 516 JACOB HACKETT CALEB JANSEN NOAH LANG KYLE NULTY HANNAH RODGERS

NASA Marshall Space Flight Center CLPS Mobility Tool Team 516

Jacob Hackett Systems and Simulation Engineer

FAMU-FSU Engineering

Caleb Jansen Communications Engineer

Noah Lang Vehicle Design Engineer

Kyle Nulty Logic and Processing Design Engineer

Kyle Nulty

Advisor and Sponsor

Faculty Advisor: Dr. Christian Hubicki FAMU-FSU College of Engineering Project Sponsor: Justin Rowe Manager: Rachel McCauley NASA Marshall Space Flight Center

Kyle Nulty

Project Scope

Commercial Lunar Mission for the 2026 Timeline

Kyle Nulty

CLPS Lander

Commercial Lunar Payload Services Landers

- NASA working with several companies
 - Required to reach Moon and carry payload(s)
 - No specific size requirements
- Minimum 13 different lander designs as of January 2020
 - Avg Height: 2 ± 1.01 m

Project Requirements

- Design for possibility of different landers
- Reach all possible locations of payload storage
- Place payload on ground upon return to base

Overall Design

Robotic Actuated Payload Transport Rover (RAPTR)

- Titanium chassis
- Full suspension
- Four aluminum mesh wheels
- Height of 1.3 m
- Image Processing for securing payload
- Arm to retrieve payload
 - Capable of 6 DoF
- Mass: 1116 kg
- Validation through Simulation
- Dynamically scaled for various length factors

Robotic Arm

Robotic Arm and End Effector

- 6 DoF to ensure workspace is entire range of payload placement
 - CLPS payloads inconsistently placed
- End effector (gripper) will rotate about X,Y,Z and translate in Z
- Gripper will move over payload, locate handle, and secure the payload

Suspension & Wheels

Suspension System

- Double A-Arm Suspension
 - Independent wheel travel
- Spring suspension
 - Reduce ride height change when loaded
- 0.75 m suspension travel
 - Traverse over rough terrain
- Titanium arms with steel springs

Hannah Rodgers

Suspension & Wheels

Suspension System

- Double A-Arm Suspension
 - Independent wheel travel
- 0.75 m suspension travel
 - Traverse over rough terrain
- Spring suspension
 - Reduce ride height change when loaded
- Titanium arms with steel springs

Suspension & Wheels

Wheels

- Tweel inspired design
 - Capable of deformations without any suspension travel
- Aluminum mesh wheels
 - Greater wear resistance than rubber
- Airless tire design
- 20in diameter (508 mm)
- # 400mm Width (15.75in)

Hannah Rodgers

Communication System

Transmission and Reception

- 1.5 km Maximum Transmission
 Distance, X-Band Signals
- Goal to implement using Deep Space Network (DSN) for quick and easy integration
- Prototype will use a prefabricated RF receiver and transmitter pair

Logic System

- Using multiple Arduino Mega 256 R3 Microcontrollers.
 - One Arduino used for motor control
 - One Arduino used for control of the robotic arm
- Using MATLAB and the Arduino Library to properly model and simulate logic for the fullscale Simulink model.

MECHANICAL ENGINEERING

Image Processing

- Uses symbol recognition
- Tracks the center of a target for orientation of the RAPTR
- Would be a live demonstration as a proof on concept, separate from the full-scale Simulink model
- Using Matlab's Image Processing Toolbox for image reading and processing

Simulation

Current Work

- Refining CAD model into Simscape
- Restricting trivial solutions for inverse kinematics of robot arm

Design Restrictions

- Wheels will not have deformation modeling
- Regolith will be modeled as a flat plane with an effective coefficient of sliding friction of 0.67⁴

Scaling GUI

Current Work

- Determining critical parameters to scale:
 - End effector to payload handle
 - Vehicle height
- Developing structures to store dimensions to send to CAD and simulation

Scaling Factor

- 0.08 <= Scale Factor <= 1</p>
 - Lunar Design Scale = 1
 - Prototype Scale = 0.08

Hannah Rodgers

We have not received our grant money as of 2/1/2020

									West Number of Operations Comparison													
										We	ek Nu	ımbeı	of S	pring	Seme	ster						
Team Tasks				1	3			Ł	5	6	7	8	9	10	11	12	13	14	15	16	17	
Date	1/	0	1/	7	1/	4	1	31	2/7	2/14	2/21	2/28	3/6	3/13	3/20	3/27	4/3	4/10	4/17	4/24	5/1	
Finalize CAD																						
Design Electronics																						
Order Parts																						
Write Control Logic				Ŀ																		
Dynamic Scaling GUI				Ŀ																		
Develop Simulation				Ŀ																		
Test Simulation																						
Assemble System																						
Test/Debug System																						
Finalize System																						
Finalize Travel Plans																						
Show at MSFC																						
Final Project Presentation																						
Finals Week																						
Graduation																						

Hannah Rodgers

Expectations

Design Maturity and Risks

- Prototype design will be shown at MSFC
- Simulation will be delivered to NASA with solid mechanical and electrical designs
 - Power will remain undecided, based on sponsor recommendation
- Risks will be analyzed further into the design process

TEAM: 516 JACOB HACKETT CALEB JANSEN NOAH LANG KYLE NULTY HANNAH RODGERS

References

- 1. Meyer, C. (2003). Lunar Regolith. Retrieved from NASA Lunar Petrographic Educational Thin Section Set: https://curator.jsc.nasa.gov/lunar/letss/regolith.pdf
- 2. National Aeronautics and Space Administration . (1996, June 21). Structural Design and Test Factors of Safety For Spaceflight Hardware. Huntsville, Alabama, USA.
- 3. Shuttleworth, J. (2019, January 7). SAE Standards News: J3016 automated-driving graphic update. Retrieved from SAE International: https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
- 4. Sperling, F. B. (1970). Basic and Mechanical Properties of the Lunar Soil Estimated From Surveyor Touchdown Data. (Report No. NASA-CR-109410, JPL-TM-33-443). Pasadena, CA: United States.
- 5. Stone, R. B., & Wood, K. L. (2000). Development of a Functional. Journal of Mechanical Design, 359-370.
- 6. Williams, D. R. (2016, May 19). The Apollo Lunar Roving Vehicle. Retrieved from The Apollo Program (1963 1972): https://nssdc.gsfc.nasa.gov/planetary/lunar/apollo_lrv.html
- 7. Lockheed Martin (2019, September) McCandless Lunar Lander: User's Guide. Retrieved from: https://www.lockheedmartin.com/en-us/products/mccandless-lunar-lander.html
- 8. NASA (2019, Nov. 20) Commercial Lunar Payload Services. Retrieved from: https://www.nasa.gov/content/commercial-lunarpayload-services

Project Requirements

Focus on securing and transporting LSS payload

🛞 💮 FAMU-FSU Engineering

Background Research

Existing technology

Lunar Rover Vehicle

- Travelled 19 kph
- Utilized wheels with chevron pattern to avoid sinking
- Carried LSS equipment and tools to different sites

ATHELE Rover

- 6 Degree of Freedom limbs with wheels at end
- 2 three-limbed robots that join to carry payload

Chariot Lunar Truck

- Pressurized cabin on wheeled chassis
- Wheels that can pivot for "crab like" motion
- Special tools can be attached to move cargo

Background Research

Challenges to engineering for the lunar surface

Regolith

- Sharp, will damage materials
- Electrostatic, can damage exposed electronics with EM radiation/static discharge
- Requires the use of specialized locomotion (wheels resistant to damage)

Little Atmosphere

- No combustion engines, must rely on electric motors
- Remote must be accessible to astronauts in suits

Cost of Transportation

 \$10,000 to put a pound of payload in Earth orbit (2008)

TAMU-FSU Engineering

MECHANICAL ENGINEERING