

A/C Preference Troubleshooting Device AirWise

03-Mar-2020

Team Introductions

John Bradshaw Team Leader

Darryl Brooks Tech Lead

Edine Landoure Design Engineer

Curtis Rahman Software Engineer

Woodley Fevrius Systems Engineer

Manuel Urbina Programmer Specialist

Edine Landoure

Department of Mechanical Engineering

Sponsor

Dr. Devine is the project sponsor, and the Entrepreneur in Residence at the FAMU-FSU College of Engineering.

Edine Landoure

3

Advisors

ME Advisor Dr. Shayne McConomy

Project Advisor Dr. Neda Yahgoobian

ECE Advisor Dr. Jerris Hooker

Edine Landoure

• Design a device that allows for the optimization of individual preferences and integrates itself with the A/C system.

Past Work : Project Scope

- Optimize environmental conditions
- Design an air conditioning control system
- Satisfy key customer needs while being energy efficient
- Market final design for various real-world applications and uses

Edine Landoure

Past Work: Markets

Primary

- Businesses
- Schools
- Hospitals

Secondary Markets

• Residential Housing

Past Work: Functional Decomposition

Concept Generation

Communication Method	Type of Data Manipulation	Environmental Outputs	
REID	SOL	Temperature	
	OQL	Volume of Air	
BlueTooth	Fuzzy Logic	Humidity (Moisture in Air)	
Diderootti	T UZZY LOGIC	Temperature and Volume	
Application	Supervised Learning	Temperature and Humidity	
Application	Supervised Learning	Air Flow	

Department of Mechanical Engineering

John Bradshaw

Department of Mechanical Engineering

Raspberry Pi Hardware

- 1. RFID Card/Keychains
- 2. Raspberry Pi
- 3. Temperature Reader
- 4. RFID Reader
- 5. 5V power source (DC)

Curtis Rahman

Software

- The software uses previous inputs to predict preferences.
- Right now it performs a simple average so it can acquire the output temperature require.
- For the moment, a simple database is run locally on the device.

Training Model

Linear Regression

Logistic Regression

Darryl Brooks

Baseline

Preferred Temperature Predicted Temperature 72.5 70.0 67.5 Temperature(F) 65.0 62.5 60.0 57.5 55.0 -2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01 Date

User Preference Model

Training Data

- Tracking the human-building interactions within air-conditioned offices
- Year worth of data recorded in 15min intervals
- 115 Columns
- 3 main features for model training
 - Time
 - Indoor Temperature
 - Personal Preference

Time	Occupant Number	Occupancy 1	Occupancy 2	Survey Time	INDOOR Ambient Temp.
735080	1	0	0	NaN	24.584695
735080.0104	1	0	0	NaN	24.584695
735080.0208	1	0	0	NaN	24.584695
735080.0313	1	0	0	NaN	24.584695
735080.0417	1	0	0	NaN	24.498384
735080.0521	1	0	0	NaN	24.671003
735080.0625	1	0	0	NaN	24.584695
735080.0729	1	0	0	NaN	24.671003
735080.0833	1	0	0	NaN	24.671003
735080.0938	1	0	0	NaN	24.671003

RFID Data Abstraction

- Unique ID attached to each user via RFID(radio frequency identification) passive chip
- Determine ID upon entry of room
- Gather data and attach to each user's "pool" in the database
- Log user, date, time, temperature

Big Data Handling

- Ability to handle larger pools of data (thousands of users with thousands of data inputs).
- Intel Edison and Arduino Uno allow a bigger handling of data.
- Possible cloud storages: Amazon Web services, Microsoft Azure and Google Cloud Platform.
- Keeping all user's information secure.

Budget

ltem Number	Quantity	Part Number	Description	Vender	Price	Total Cost
1	. 1	L 5C964	Galvanized Steel Axial Duct Booster, 8 ", 120 V	Grainger	\$66.15	\$66.15
2	: 1	L cb-8-10.5-12.5-BRACKETS	Square to Round Ceiling Box Transition	HVAC Quick	\$56.00	\$56.00
3	1	L 91250	Superior Pump 91250 1/4 HP Thermoplastic Utility Pump	Amazon	\$46.49	\$46.49
4	. 2	2 PP855-71	Plumb Pak PP855-71 Dishwasher Discharge Hose with (2) Clamps, 7/8 in X 6 ft, Rubber	Amazon	\$20.70	\$41.40
5	5 1	L 3000000152NP	Coleman 48-quart performance Cooler	Amazon	\$24.24	\$24.24
6	;	ABCD2X2	Accord Ventilation ABCD2X2 Ceiling Diffuser, 24" ${\rm x}$ 24" , white	Amazon	\$85.86	\$85.86
7	, 2	3775	Raspberry Pi 3B+ - Microcomputer	Adafruit	\$40.00	\$80.00
8	3 1	RC522	RFID Module/Card Readers	Amazon	\$20.00	\$20.00
9) 1	DHT11	Temperature/Humidity Sensor	Amazon	\$10.49	\$10.49
					Tota	l \$430.63

Future Works and Improvements

- Give Final Pitch at InNOLEvation (Win it)
- Begin Engineering Shark Tank
 Competition
- Integrate Mechanical System with Raspberry Pi Hardware/Software
- Validation Techniques/Results
- Website Development

Curtis Rahman

- The prototype will only handle small amounts of data.
- The database is locally run; it may run out space before a certain time duration.
- Mimicking real-life user data to train and test algorithm.
- **RFID** Limitations

Curtis Rahman

