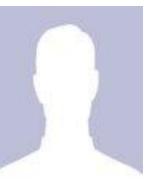
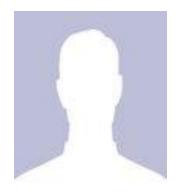


A/C Preference Troubleshooting Device

14-Nov-19

Team Introductions


John Bradshaw Team Leader


Darryl Brooks Tech Lead

Edine Landoure Design Enginee

Curtis Rahman Software Engineer

Woodley Fevrius Systems Engineer

Programmer Specialist

Department of Mechanical Engineering

Sponsor

Dr. Devine is the project sponsor, and the Entrepreneur in Residence at the FAMU-FSU College of Engineering.

Manuel Urbina

3

Advisors

ME Advisor Dr. Shayne McConomy

Project Advisor Dr. Neda Yahgoobian

ECE Advisor Dr. Jerris Hooker

Manuel Urbina

Objective

Design a device that allows the optimization of the A/C temperature for several different inputs for a given space

Project Background

Manuel Urbina

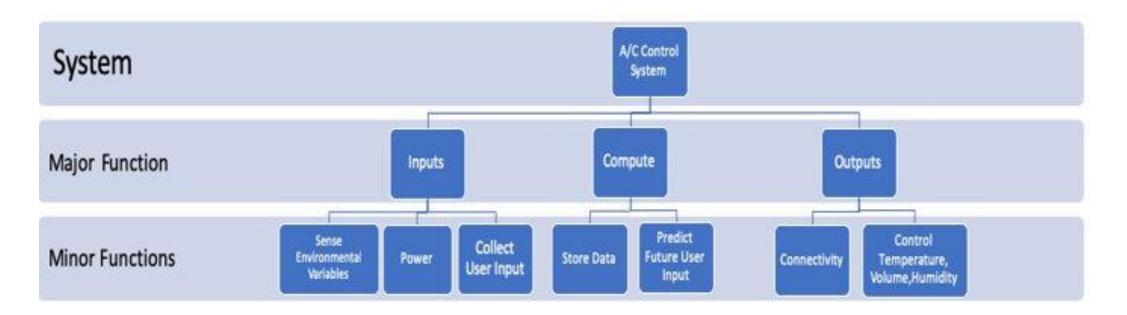
Department of Mechanical Engineering

Customer Needs

•Allow everyone to have their satisfying temperature and air flow.

•To cut out the need for maintenance

•Keep the overall system in place just improve the possibility for everyone to set their preferences


- •Allow customers to directly regulate their own temperature.
- •Create a device to control the temperature for better comfort.
- •Allow multiple people to set up their temperature preferences.
- •Redistribute to everyone their freedom of choice about the temperature.
- •Allow users to manage their own room temperature
- •Use an algorithm to determine what times the user is too hot or too cold. From there
- the unit will autonomously control the room temperature
- •Product to be modular for different systems.

Manuel Urbina

Functional Decomp

Manuel Urbina

Concept Generation

Communication Method	Type of Data Manipulation	Environmental Outputs		
RFID	SQL	Temperature		
	JQL	Volume of Air		
BlueTooth	Fuzzy Logic	Humidity (Moisture in Air)		
	ruzzy Logic	Temperature and Volume		
Application	Supervised Learning	Temperature and Humidity		
	Supervised Learning	Air Flow		

Manuel Urbina

Concept Selection

		Engineering Characteristics						
Improvement Direction		\uparrow	\checkmark	\checkmark	\checkmark	\checkmark	\uparrow	
	Units	MPa	sec	min	sec	n/a	years	
Customer Requirements			Time to change					
	Weight Factor	Material Rigidity	temperature	Installation time	Connection time	User interface	Reliability	
Satisfy Temperatures	0.43974	1	9	3	9	9	1	
Easy Process	0.14002	1	3	9	9	9	3	
Preference Control	0.19431	1	3	1	1	9	3	
Individual Temp Control	0.12214	3	9	1	1	1	1	
Prediction	0.06295	1	1	1	1	3	1	
Compatibility	0.04084	3	1	9	1	9	1	
Raw Score	25.31874283	1.32595735	6.163678458	3.326399042	5.597267253	7.277621081	1.627819643	
Relative Weight %		5.237058409	24.3443306	13.1380893	22.10720845	28.74400649	6.429306754	
Rank Order		6	2	4	3	1	5	

Embodiment

Upcoming Presenter's Name

Manufacturing

Upcoming Presenter's Name

John Bradshaw

15

Validation

- •Temperature Change
- •Time of temperature Change
- •User Temperature Satisfied and Maintained
- System Individualized and Personalized

Project Management


Two Week Plan

FAMU-FSU Engineering

Most Important Points

- 1. The quick brown fox jumps over the lazy dog.
- 2. The quick brown fox jumps over the lazy dog.
- 3. The quick brown fox jumps over the lazy dog.
- 4. The quick brown fox jumps over the lazy dog.
- 5. The quick brown fox jumps over the lazy dog.
- 6. The quick brown fox jumps over the lazy dog.

Lessons Learned

Reference

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Questions (be sure to design your own)

