## Robotic Pole Inspection Collar

Team 505 "Team Southern Pine" FPL

FAMU-FSU Engineering

#### **ME Team Introductions**



Mathew Crespo Mechanical Systems Engineer



John Flournoy Design & Material Engineer



Carey Tarkinson Mechatronics & Programming Engineer



Angelo Mainolfi Project Engineer

Carey Tarkinson

Department of Computer & Electrical Engineering Department of Mechanical Engineering



#### **EE Team Introductions**



Corie Cates Project Engineer



Alonzo Russell Hardware Engineer



Leonardo Vazquez Software Engineer



Thomas Williams Hardware Engineer

Carey Tarkinson



#### **Sponsors and Advisors**





**Engineering Sponsor** Troy Lewis Engineer II Smart Grid & Innovation Florida Power & Light



Academic Advisor Jonathan Clark, Ph.D. Associate Professor



Shayne McConomy, Ph.D. Teaching Faculty

John Flournoy





#### The objective is to design a mechanism that can climb a wooden

#### utility pole and check its structural integrity

John Flournoy



#### **Project Background**

- FPL is Florida's largest utility company serving over 5 million customer accounts
- FPL's linemen interact with wooden utility poles daily to serve their customers
- Checking the structural integrity is crucial to keeping linemen safe
- We are motivated by a safety incident

John Flournoy



#### **Developed Guidelines**

Key Goals

O Ascend and descend a wooden utility pole

- O Detect rot within the pole
- Interface the readings to the linemen

Targets & Metrics

- Olimb a minimum of 15 feet
- Scan a minimum depth of 8 inches
- Interface readings within 60 seconds



**Carey Tarkinson** 



#### **Prototype One**



Using a bicycle-climber frame structure

Large frame when built to suit a utility pole diameter

A heavier load is beneficial to the design

Carey Tarkinson



#### **Prototype Two**



Triangular frame helps keep complexity down

Easily opens and closes around utility poles of varying diameters

Provides area to mount sensors and motors

John Flournoy



#### **Concept Generation**

- Crapshoot
   Scamper
   Biomimicry
   Mor
  - Morphological Chart



John Flournoy

10



#### **High Fidelity Concepts**



John Flournoy



#### **Binary Pairwise Comparison**

#### **Evaluation Criteria Hierarchy**

- 1) Rot Detection
- 2) Ability to Climb
- 2) OSHA Test Standards
- 3) Data Interface
- 4) Portability
- 5) Modularity



Carey Tarkinson



#### **House of Quality**

#### Impactful Engineering Characteristics

Stability
Safety
Maneuverability
Speed



13



#### Winning Concept



John Flournoy



## **Testing Prototype Three**

Motorized Triangle Climber Prototype

**Revelations:** 

Finching caused by poor wheel mounting
Motors were grossly underpowered
Wheels struggled to maintain contact to pole



John Flournoy

Department of Computer & Electrical Engineering Department of Mechanical Engineering



#### **Prototype Four Progress**

- 3D printed hourglass wheels to increase contact area
- 3D printed bearing mounts that attach to the inside of the frame
- Skateboard bearings allow smooth rotation of acetal wheel shafts
- Long passive wheel shaft for diameter compliance



Carey Tarkinson



### **Augmented Triangle Design**

Triangular prism climber

- Designed to combat potential stability and pinch issues
- Wrap around elastic band to allow variable tension



Carey Tarkinson



#### **Prototype Testing Method**

FPL provided pole samples for safe testing
Samples included healthy and rotten power pole segments
Mathematical Mathematical Structure Sensor Content Segments

John Flournoy



#### **Future Work**









Begin testing on pole samples

Purchase final components

Develop sensor housing Test automated climbing ability

Carey Tarkinson

Department of Computer & Electrical Engineering Department of Mechanical Engineering



#### Sources

- <u>https://www.slunglow.org/event/new-show-cap-pie/</u>
- <u>https://journalnow.com/archive/so-metal-the-world-of-metal-detecting-is-changing-and-north-carolina-is-home-to/article\_7bb241c8-ecac-11e6-a1f4-7f1a74729de1.html</u>
- <u>https://www.onlinewebfonts.com/icon/546768</u>
- https://www.flaticon.com



### Appendix

• The following slides have supporting information



## **Analytical Hierarchy Process - AHP**

- Pairwise Matrix
- Normalized Pairwise Matrix
- Criteria Weights
- Weighed Sum Vector
- Consistency Vector





#### **AHP Chart**

| Pairwise Comparison    |                     |                  |                   |             |                        |            |       |  |
|------------------------|---------------------|------------------|-------------------|-------------|------------------------|------------|-------|--|
| Customer<br>Needs      | Ability to<br>Climb | Rot<br>Detection | Data<br>Interface | Portability | OSHA Test<br>Standards | Modularity | Total |  |
| Ability to<br>Climb    | -                   | 0                | 1                 | 1           | 1                      | 1          | 4     |  |
| Rot<br>Detection       | 1                   | -                | 1                 | 1           | 1                      | 1          | 5     |  |
| Data<br>Interface      | 0                   | 0                | -                 | 1           | 0                      | 1          | 2     |  |
| Portability            | 0                   | 0                | 0                 | -           | 0                      | 1          | 1     |  |
| OSHA Test<br>Standards | 0                   | 0                | 1                 | 1           | -                      | 1          | 3     |  |
| Modularity             | 0                   | 0                | 0                 | 0           | 0                      | -          | 0     |  |
| Total                  | 1                   | 0                | 3                 | 4           | 2                      | 5          |       |  |

Table 1: Analytical Hierarchy Process

Department of Computer & Electrical Engineering Department of Mechanical Engineering



#### AHP 2

| Normalized Pairwise Comparison |                     |                  |                   |             |                        |            |        |  |  |
|--------------------------------|---------------------|------------------|-------------------|-------------|------------------------|------------|--------|--|--|
| Customer<br>Needs              | Ability to<br>Climb | Rot<br>Detection | Data<br>Interface | Portability | OSHA Test<br>Standards | Modularity | Weight |  |  |
| Ability to<br>Climb            | -                   | 0                | 0.33              | 0.25        | 0.5                    | 0.2        | 1.28   |  |  |
| Rot<br>Detection               | 1                   | -                | 0.33              | 0.25        | 0.5                    | 0.2        | 2.28   |  |  |
| Data<br>Interface              | 0                   | 0                | -                 | 0.25        | 0                      | 0.2        | 0.45   |  |  |
| Portability                    | 0                   | 0                | 0                 | -           | 0                      | 0.2        | 0.20   |  |  |
| OSHA Test<br>Standards         | 0                   | 0                | 0.33              | 0.25        | -                      | 0.2        | 0.78   |  |  |
| Modularity                     | 0                   | 0                | 0                 | 0           | 0                      | -          | 0      |  |  |
| Total                          | 1                   | 0                | 1                 | 1           | 1                      | 1          |        |  |  |



#### HOC

Table 3: House of Quality Relationship Matrix

| Relationship Matrix between Engineering Characteristics and Customer Needs |                                |                             |       |           |        |                     |                 |  |  |  |
|----------------------------------------------------------------------------|--------------------------------|-----------------------------|-------|-----------|--------|---------------------|-----------------|--|--|--|
|                                                                            |                                | Engineering Characteristics |       |           |        |                     |                 |  |  |  |
| Improveme                                                                  | nt Direction                   | Ļ                           | 1     | 1         | 1      | Ļ                   | ↑ (             |  |  |  |
| Un                                                                         | lits                           | lb.                         | ft/s  | N/A       | N/A    | s                   | N/A             |  |  |  |
| Customer<br>Needs                                                          | Importance<br>Weight<br>Factor | Weight                      | Speed | Stability | Safety | Ease of<br>Mounting | Maneuverability |  |  |  |
| Ability to climb                                                           | 5                              | 9                           | 7     | 9         | 8      | 5                   | 7               |  |  |  |
| Rot<br>Detection                                                           | 5                              | 4                           | 5     | 8         | 9      | 4                   | 8               |  |  |  |
| Data<br>Interface                                                          | 4                              | 2                           | 9     | 9         | 8      | 3                   | 5               |  |  |  |
| Portability                                                                | 3                              | 9                           | 3     | 5         | 3      | 9                   | 8               |  |  |  |
| OSHA Test<br>Standards                                                     | 5                              | 3                           | 2     | 7         | 8      | 5                   | 5               |  |  |  |
| Modularity                                                                 | 2                              | 4                           | 1     | 2         | 4      | 6                   | 4               |  |  |  |
| Raw Sco                                                                    | ore (887)                      | 123                         | 142   | 175       | 174    | 121                 | 152             |  |  |  |
| Relative                                                                   | Weight %                       | 13.9                        | 16.0  | 19.7      | 19.6   | 13.6                | 17.1            |  |  |  |
| Rank Order                                                                 |                                | 5                           | 4     | 1         | 2      | 6                   | 3               |  |  |  |





Table 4: Initial Pugh Chart

| Selection<br>Criteria          | Datum           | Variable<br>Arm<br>Climber | Rollercoaster<br>Gripper | Counter-<br>Weight<br>Triangle<br>Hybrid | Serpent<br>Robot | Hybrid<br>Bike<br>Design | Triangle<br>Climber | Batmobile<br>Climber |
|--------------------------------|-----------------|----------------------------|--------------------------|------------------------------------------|------------------|--------------------------|---------------------|----------------------|
| Vertical<br>Traversal<br>Speed |                 | -                          | +                        | -                                        | -                | -                        | -                   | +                    |
| Stability                      | Bike<br>Climber | S                          | +                        | S                                        | +                | +                        | +                   | -                    |

| Weight              |  | - | - | - | - | - | + | + |
|---------------------|--|---|---|---|---|---|---|---|
| Ease of<br>Mounting |  | - | - | - | - | - | - | + |
| Portability         |  | s | - | - | - | - | + | + |
| Modularity          |  | S | + | + | - | S | + | - |
| Simplicity          |  | - | - | - | - | - | - | - |
| Number of Pluses    |  | 0 | 3 | 1 | 1 | 1 | 4 | 4 |
| Number Minuses      |  | 4 | 4 | 5 | 6 | 5 | 3 | 3 |
| Number of S's       |  | 3 | 0 | 1 | 0 | 1 | 0 | 0 |



## Pugh Chart 2

| Selection Criteria             | Datum                     | Triangle Climber | Batmobile Climber | Variable Arm Climber |
|--------------------------------|---------------------------|------------------|-------------------|----------------------|
| Vertical<br>Traversal<br>Speed |                           | +                | +                 | -                    |
| Stability                      |                           | +                | -                 | S                    |
| Weight                         |                           | +                |                   | +                    |
| Ease of Mounting               | Roller Coaster<br>Gripper | +                | +                 | +                    |
| Portability                    |                           | S                | +                 | -                    |
| Modularity                     |                           | + -              |                   | S                    |
| Simplicity                     |                           | +                | +                 | -                    |
| Number of Pluses               |                           | 6                | 5                 | 2                    |
| Number Minuses                 |                           | 0                | 2                 | 3                    |
| Number of S's                  |                           | 1                | 0                 | 2                    |

Table 5: Second Pugh Chart



# **Project Management**

Department of Computer & Electrical Engineering Department of Mechanical Engineering



#### **# Most Important Points**

- 1. The quick brown fox jumps over the lazy dog.
- 2. The quick brown fox jumps over the lazy dog.
- 3. The quick brown fox jumps over the lazy dog.
- 4. The quick brown fox jumps over the lazy dog.
- 5. The quick brown fox jumps over the lazy dog.
- 6. The quick brown fox jumps over the lazy dog.



#### **Lessons Learned**



Department of Computer & Electrical Engineering Department of Mechanical Engineering



#### Reference

Department of Computer & Electrical Engineering Department of Mechanical Engineering



# Questions (be sure to design your own)

Department of Computer & Electrical Engineering Department of Mechanical Engineering



# **Backup Slides**

Department of Computer & Electrical Engineering Department of Mechanical Engineering

