FPL Robotic Pole Inspection Collar

Team 505 "Team Southern Pine"

Department of Computer & Electrical Engineering Department of Mechanical Engineering

ME Team Introductions

Mathew Crespo Mechanical Systems Engineer

John Flournoy Design & Material Engineer

Angelo Mainolfi Project Engineer

Carey Tarkinson Mechatronics & Programming Engineer

Carey Tarkinson

EE Team Introductions

Corie Cates Project Engineer

Alonzo Russell Hardware Engineer

Leonardo Vazquez Software Engineer

Thomas Williams Hardware Engineer

Carey Tarkinson

Sponsor's and Advisor's

Engineering Sponsor Troy Lewis Engineer II Smart Grid & Innovation Florida Power & Light

Department of Computer & Electrical Engineering Department of Mechanical Engineering

John Flournoy

The objective is to design a mechanism that can climb a wooden

utility pole and check its structural integrity

John Flournoy

Project Background

- Florida Power and Light (FPL) is a power utility company serving 5 million customer accounts
- FPL's linemen work on power poles, some of which cannot be reached by bucket truck
- Pole safety inspection is a subjective process that is prone to error
- FPL works continuously to ensure safety of its workers and consistently develops new safety procedures

John Flournoy

Motivation

In summer 2020, a lineman for FPL was climbing a pole in a resident's backyard

The pole suffered from rot at the base and cracked with the lineman at the top of the pole

The lineman came crashing down on top of a glass table

Sourced from https://www.seattletimes.com/seattlenews/new-video-shows-tukwila-power-polessnapping-like-matchsticks/

Department of Computer & Electrical Engineering Department of Mechanical Engineering

Carey Tarkinson

Key Goals

Design a lightweight robot that can be easy to mount on a wooden pole

Design a reliable robotic testing sensor

Design a robotic system that can be modular

Design an interface that will display the status of the pole's heath

Department of Computer & Electrical Engineering Department of Mechanical Engineering

Carey Tarkinson

FPL Test Standards

Step	Action
1	Determine ownership, height, class, and year of pole.
	Information can be found on the brand/birthmark
	information that is on the pole. In addition, Bell South
	poles have the metal strip on it.
2 Conduct visual inspection of pole.	
	Identify cracks
	Identify woodpecker holes
	Identify deterioration
Test for quality of wood.	
	Hit pole with a hammer at several locations
	As high as you can reach comfortably
	Waist high
	Near ground
	Determine state of wood through sound made when hit (crisp sound for new wood & hollow sound for rotten wood)

4	Test for deterioration at the ground.	
	Excavate six inches around pole.	
	Penetrate pole with a screwdriver	
	Determine if pole is rotten at ground	
5	Repeat steps 1-4 for two adjacent poles.	
6	Identify underground risers	
	Type (primary, secondary, telephone, CATV,	
	Streetlight, traffic signal)	
	Number and size of riser shield or conduit on pole.	
	Physical location (Quadrant)	
7	Write recommendations as to the installation or removal	
	of pole.	
	Evaluate outer state of pole	
	Evaluate inner state of pole	
	Recognize foreign utilities attached to pole	
	Record relevant information on field notes.	

OSHA Test Standards

Hammer test: Rap the pole sharply with a hammer weighing about 1.4 kg (3 pounds), starting near the ground line and continuing upwards circumferentially around the pole to a height of approximately 1.8 meters (6 feet). The hammer will produce a clear sound and rebound sharply when striking sound wood. Decay pockets will be indicated by a dull sound or a less pronounced hammer rebound.

Primary Markets:

Secondary Market:

Department of Computer & Electrical Engineering Department of Mechanical Engineering

Carey Tarkinson

The customer needs were established by asking questions to people of interest to gather information

There were interviews with

Our FPL sponsors

An International Brotherhood of Electrical Workers Representative

Department of Computer & Electrical Engineering Department of Mechanical Engineering

Carey Tarkinson

- Robot needs to climb the pole
- Replace and standardize the hammer test with sensor or mechanism while meeting OSHA standards of inspection
- The sensors can determine the integrity of the wood
- The data needs to be interfaced to the linemen
- Be of convenient size and weight for carrying

Functional Decomposition

Department of Computer & Electrical Engineering Department of Mechanical Engineering

John Flournoy

Functional Decomposition

Department of Computer & Electrical Engineering Department of Mechanical Engineering

John Flournoy

Functional Decomposition

Department of Computer & Electrical Engineering Department of Mechanical Engineering

John Flournoy

Rapid Prototyping

- To develop our climbing mechanism we are preparing a prototype out of cardboard
- This prototype will be used to identify possible problems early on
- Constructing an early prototype will provide key insights to the dynamics of climbing on a wooden pole

Future Work

Assemble prototype 1 and check functionality Improve climbing

Develop new concepts

Select concept

Develop prototype 2 and check functionality

Carey Tarkinson

- <u>https://www.slunglow.org/event/new-show-cap-pie/</u>
- <u>https://journalnow.com/archive/so-metal-the-world-of-metal-detecting-is-changing-and-north-carolina-is-home-to/article_7bb241c8-ecac-11e6-a1f4-7f1a74729de1.html</u>
- <u>https://www.onlinewebfonts.com/icon/546768</u>
- <u>https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.269AppD</u>
- <u>https://www.seattletimes.com/seattle-news/new-video-shows-tukwila-power-poles-snapping-like-matchsticks/</u>
- <u>https://www.flaticon.com</u>

• The following slides have supporting information

Question	Statement	Interpreted Need
"What does the device have to incorporate in its test of the wood?"	"The device needs to incorporate a few steps of the OSHA wooden pole test, especially the hammer test. This would allow for less injury and more assessment of the utility asset."	The device adheres to OSHA standards of inspection.
"What should the device do with its findings?"	"The linemen should be able to control the robot with its test or have it report back the findings of the pole's condition."	The device can interface with the linemen and deliver data directly to them.
"At which height is the pole generally rotten?"	"The rot is usually found at ground level."	The device can operate on the lower portion of the pole.

Question	Statement	Interpreted Need
"What is the intended mobility of the device?"	"The device needs to be able to ascend and descend the pole to perform its examination and test."	The device can climb a wooden utility pole.
"What does the device need to test for?"	"It needs to test for rotten wood or voids in the wooden pole. This can seriously affect the structural integrity of the pole and is a huge safety issue."	The sensors can determine the integrity of the wood.
"At what height or location is the pole bored?"	"Anywhere suspicious including above reach Height."	The device can examine the pole at various heights beyond operator reach.

Question	Statement	Interpreted Need
"What is optimal for size and weight?"	"It can fit on the back of the utility truck and weighs under 30 lbs."	The device is convenient to transport.
"What is the most common class of pole encountered?"	"The most common are class II and class III poles."	The device works on poles of class II and III.
"What is the most common height of poles?"	"I would say 30', 35', and 40'. That should cover a good range of installs for this initial project while also focusing more on the types of poles that are usually encountered in the "rear of" and inaccessible locations where the crew will be required to physically climb instead of being able to use a bucket truck."	The device works with a set range of diameters (Derived from height to diameter relations)

Question	Statement	Interpreted Need
"What would make the mechanism most effective in the field?"	"If the device tests with OSHA regulation or incorporates that into the design. This allows easy adoption and incorporation into a utility workers toolset."	The device adheres to OSHA standards of inspection.
"What would you say would make the robot more appealing to use to you personally?"	"It would be helpful if it could determine its life if it is OSHA regulated, hip worn tool that is similar to a hammer, rechargeable. It would be best if it was user friendly."	The device is convenient to use and portable.

Project Management

Department of Computer & Electrical Engineering Department of Mechanical Engineering

Most Important Points

- 1. The quick brown fox jumps over the lazy dog.
- 2. The quick brown fox jumps over the lazy dog.
- 3. The quick brown fox jumps over the lazy dog.
- 4. The quick brown fox jumps over the lazy dog.
- 5. The quick brown fox jumps over the lazy dog.
- 6. The quick brown fox jumps over the lazy dog.

Lessons Learned

Department of Computer & Electrical Engineering Department of Mechanical Engineering

Reference

Questions (be sure to design your own)

Backup Slides

Department of Computer & Electrical Engineering Department of Mechanical Engineering

