Robotic Pole Inspection Collar

Team 505
"Team Southern Pine"

ME Team Introductions

Mathew Crespo

Mechanical Systems

Engineer

John Flournoy

Design & Material

Engineer

Carey Tarkinson

Mechatronics &

Programming

Engineer

Angelo Mainolfi

Project Engineer

EE Team Introductions

Corie Cates

Project Engineer

Alonzo Russell

Hardware

Engineer

Leonardo Vazquez *Software Engineer*

Thomas Williams

Hardware

Engineer

Sponsors and Advisors

Engineering Sponsor
Genese Augustin
Lead Project Manager
Smart Grid & Innovation
Florida Power & Light

Engineering Sponsor
Troy Lewis
Engineer II
Smart Grid & Innovation
Florida Power & Light

Academic Advisor
Jonathan Clark, Ph.D.

Associate Professor

Engineering Professor
Shayne McConomy, Ph.D.

Teaching Faculty

Objective

The objective is to design a mechanism that can climb a wooden utility pole and check its structural integrity

Project Background

- FPL is Florida's largest utility company serving over 5 million customer accounts
- FPL's linemen interact with wooden utility poles daily to maintain reliability
- Checking the structural integrity is crucial to keeping linemen safe

Problem

- Compromised utility poles pose hidden safety risks for utility workers
- An incident occurred over the summer of 2020
- Currently a hammer is used to check for rotten wood
- This test is certified by OSHA
- This mechanism is being created to replace outdated testing measures

Project Guidelines

Key Goals

- Ascend and descend a wooden utility pole
- Interface the readings to the linemen
- Obesign to be a lightweight climber

Targets & Metrics

- © Climb a minimum of 15 feet
- Interface readings within 60 seconds
- Keep the weight below 40 pounds

Rapid Prototypes

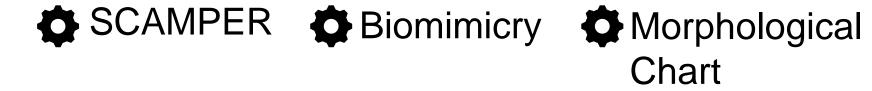
Prototype 1

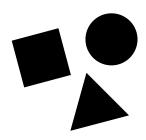
Prototype 1 used a bicycle frame structure

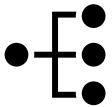
Prototype 2 used a simpler geometric frame

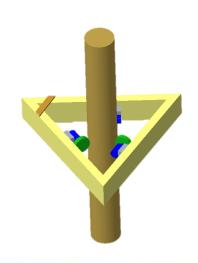
Prototype 2

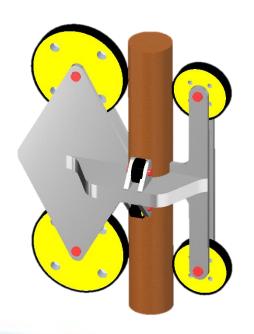
Angelo Mainolfi




Concept Generation







High Fidelity Concepts

Triangle Climber

Roller Coaster Gripper

Batmobile Climber

Concept Selection

Binary Pairwise

Evaluation Criteria Hierarchy

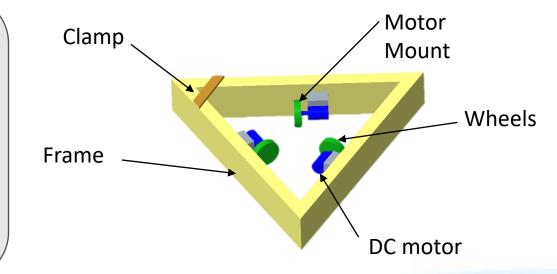
- 1. Space for Sensors
- 2. Ability to Climb
- 3. OSHA Test Standards
- 4. Data Interface
- 5. Portability
- 6. Modularity

House of Quality

Engineering Characteristics

- **❖**Stability
- Safety
- Maneuverability
- Speed

Winning Concept


Triangle Climber

Modularity

Stability

Easy to use

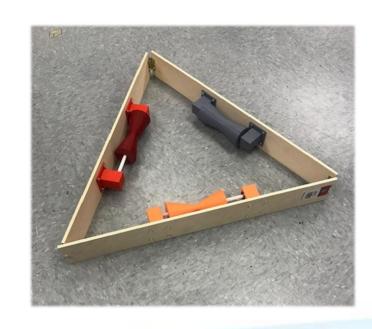
Variable climbing

Prototype Three

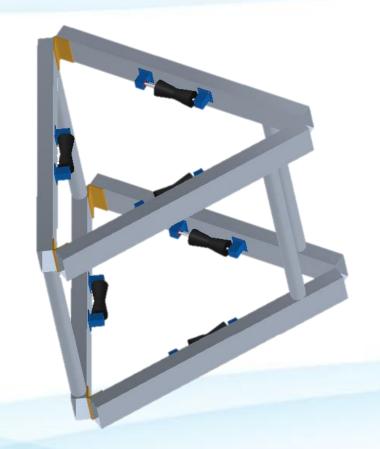
Motorized Triangle Climber

Challenges Revealed:

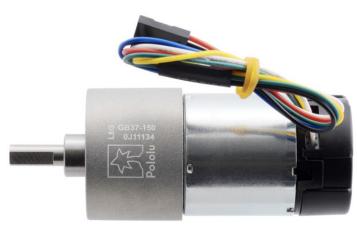
- Pinching caused by poor wheel mounting
- Motors were grossly underpowered
- Wheels struggled to maintain contact to pole
- The model could not account for variable diameter poles


Pole Samples

- FPL provided us with three pole samples 4ft in length
- Previously we tested on live power poles
- These samples provide us with a safe testing measure
- The unhealthy sections are used by the Electrical Engineering team


Prototype Four

- 3D printed hourglass wheels to increase contact area
- 3D printed bearing mounts that attach to the inside of the frame
- Skateboard bearings allow smooth rotation of acetal wheel shafts
- Long passive wheel shaft for diameter compliance


Design Five

- Utilized prototype four and incorporated a lower unit for extra stability
- Designed to eliminate pinching caused by motor torque
- Provides more area for ground penetrating radar

Motor Specification

- To spec a motor, we needed to determine minimum torque necessary to overcome gravity
- The radius of the wheel was taken as an average of the major and minor diameters of the hourglass wheel
- The torque was calculated with a mass of 18 kg and a moment arm of 25 mm

Shaft Mounting

- The hourglass wheel's unconventional design posed a problem with easily mounting to a motor shaft
- To remedy this, holes were created on each side of the hourglass wheel where setscrews will be installed to keep the hourglass wheel mounted to the shaft

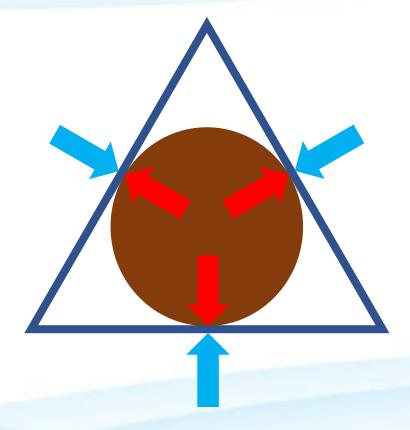
John Flournoy

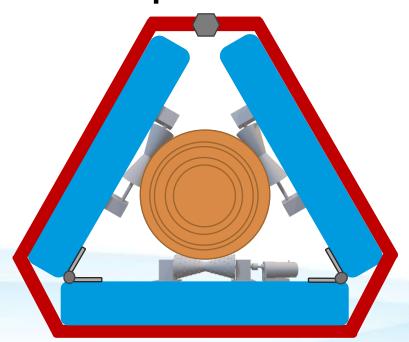
Wheel Friction Method

- The more friction the driver wheel produces, the less tension will be needed from the strap
- The coefficient of friction must be increased as high as possible so the robot will not neutralize on the pole
- A rubber coating was applied to the 3D printed driver wheel
- Coefficient of rubber on wood is about 0.95

Variable

Diameter

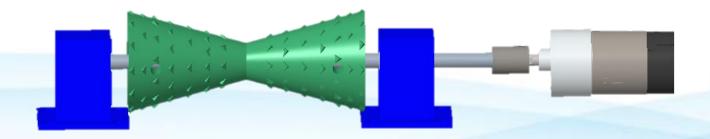

Prototype Five


Strap Positioning Ideas

- Tension around the robot increases the normal force on the driven wheel
- This generates the friction needed to translate the collar up
- A ratcheting strap provides the tension needed to push the wheel into the pole

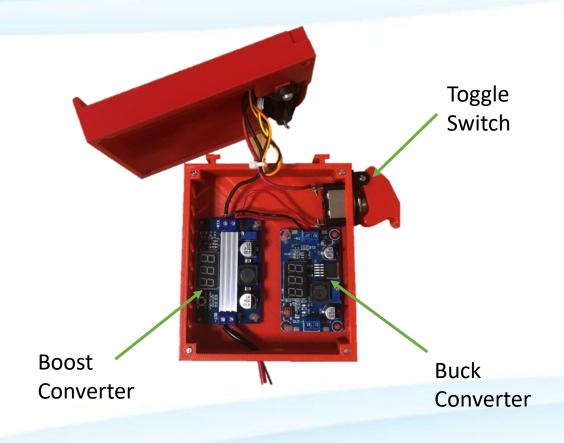
Tension Strap Path Ideas

Perimeter wrap


Weave wrap

Wheel Design Modifications

- Ridges and a rubber coating were added to the hourglass wheel to provide better grip
- A spiked wheel design was also considered in the case the ridged wheel failed


Power Supply

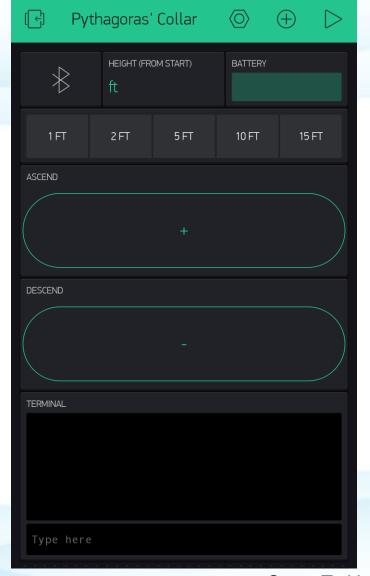
- To best accommodate FPL lineman, the battery powering the robot is an FPL issued drill battery
- The battery can deliver 21.6 V at 5.2 Ah
- The battery adapter and cargo box is modeled similarly to a commercial grade battery charger

Power Supply

- Within the cargo box are the DC-to-DC converters necessary to distribute power accordingly
- The buck converter is used to downgrade the output battery voltage for the microcontroller
- The boost converter increase the battery voltage to 24 Volts to supply the rated voltage to the motor

Prototype Six

- This robot utilized the weaved strap design, rubber coated wheel with printed ridges, and a ratchet strap
- The ratchet strap supplied the tension needed to create contact between the pole and the driven wheel
- The collar successfully climbed without additional support

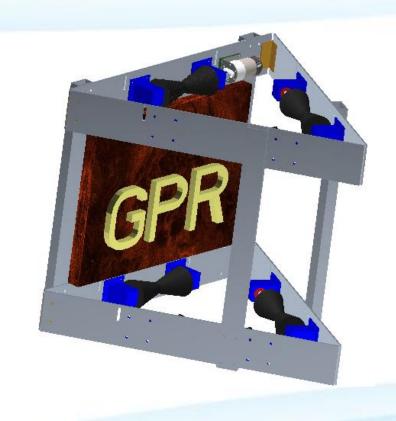

Prototype Six Climbing

- The prototype successfully carried a weight of 25 pounds
- The weaved strap design implemented the tension in the correct manner

Controls and Interface

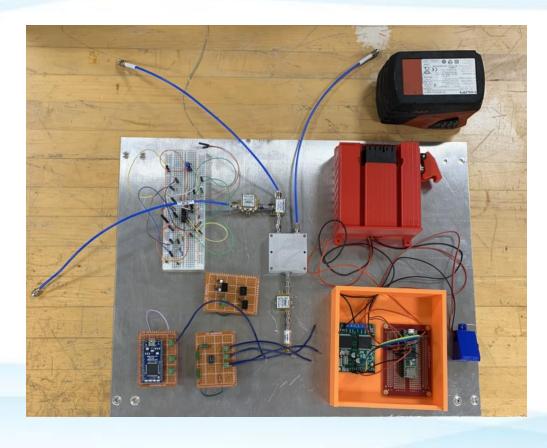
- Blynk will be used to wirelessly control robot with a smart phone via Bluetooth
- The user interface will display various measures to the operator
- Buttons will be used to control the ascent and descent of robot

Backup Control

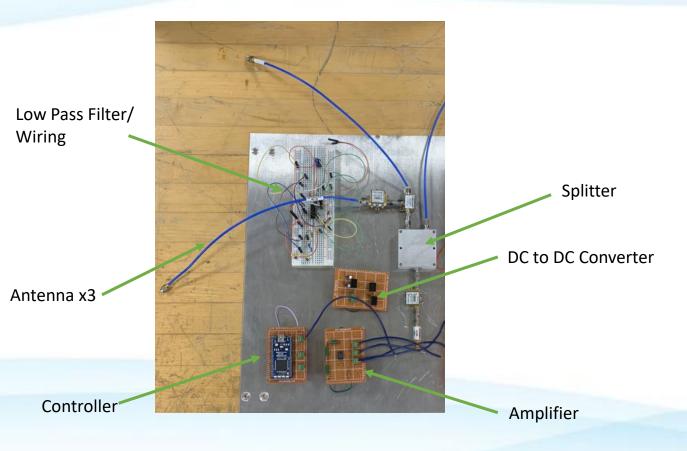

- Due to hardware-software incompatibility we moved to an IR sensor
- The remote can direct the robot up and down the pole

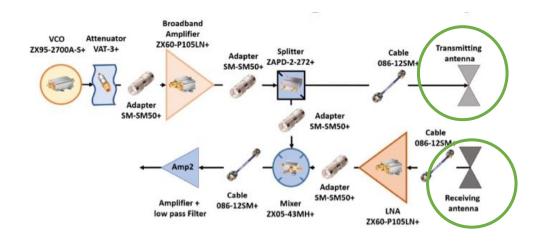
Final Design

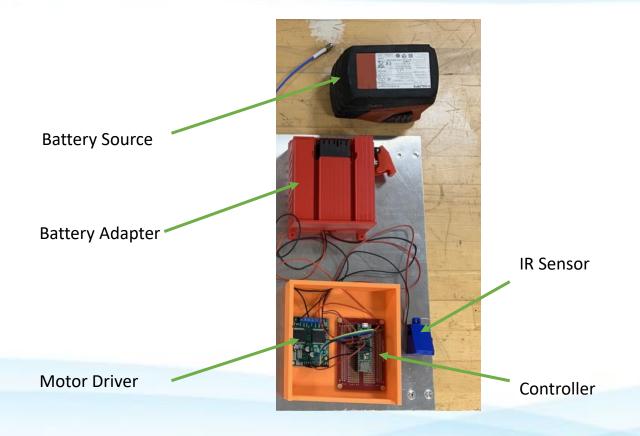
- 1/8" thick aluminum segments will be used to take advantage of the metal plates' flexibility
- The final design only weighs 10 pounds
- It can support a payload for our sensor and associated parts



Climbing Action




Electrical Component Layout


GPR Components

Battery and Controller

Future Work

- Integrate the sensor and test with linemen in real world scenarios
- Consult with OSHA to propose this new test standard
- Upgrade the user interface from IR sensor and remote to the Bluetooth application, Blynk
- Determining the battery lifespan of the entire integrated robot

Lessons Learned

- Rapid prototyping was extremely helpful
- Testing the prototypes early was crucial for success
- Integration between climbing and detection should have taken place earlier to fine tune the collaboration
- We quicky adapted to new learning environments during a pandemic

Mathew Crespo

Summary

- The robotic pole inspection collar is a beneficial device that provides additional safety for utility workers
- This inspection collar has the potential to replace the OSHA standard tests
- Simple geometry allows for an easy assembly and high stability
- Our climber can scale utility poles and provide the power and modularity for a ground penetrating radar

Angelo Mainolfi

Roadmap To Our Final Design

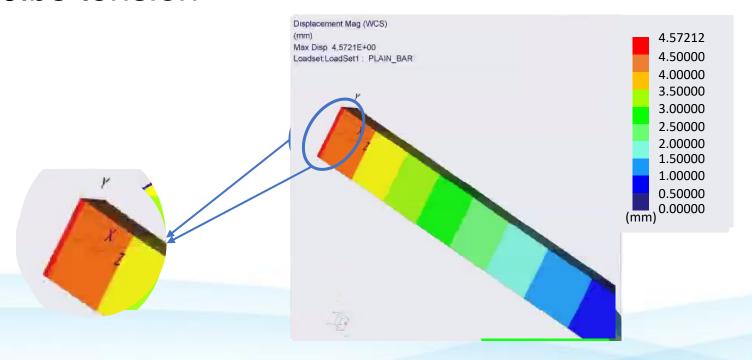
Angelo Mainolfi

Appendix

• The following slides have supporting information

Roadmap To Our Final Design

Angelo Mainolfi

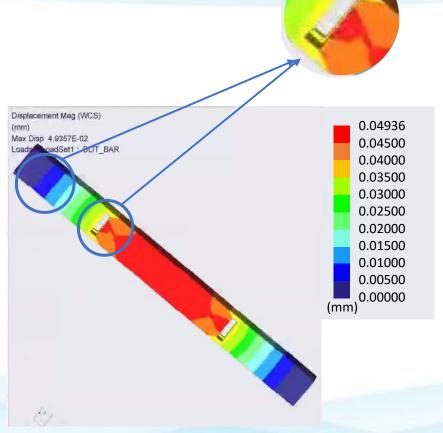


Sources

- https://www.slunglow.org/event/new-show-cap-pie/
- https://journalnow.com/archive/so-metal-the-world-of-metal-detecting-is-changing-and-north-carolina-is-home-to/article_7bb241c8-ecac-11e6-a1f4-7f1a74729de1.html
- https://www.onlinewebfonts.com/icon/546768
- https://www.flaticon.com
- https://devmesh.intel.com/projects/blynk

Perimeter Wrap FEA

60lbs tension



Carey Tarkinson

Weave Wrap FEA

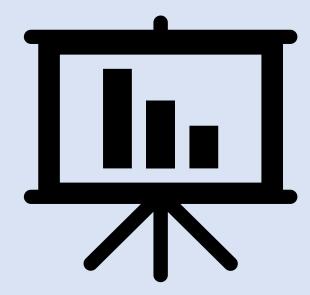
60lbs tension

Carey Tarkinson

Spike Wheel Design

- To produce the most traction,
 ¼ inch track spikes were imbedded into the hourglass wheel
- The spikes are minimally invasive and allow the robot to traverse with ease

John Flournoy



Material properties

Mechanical Properties			
Hardness, Brinell	95	95	AA; Typical; 500 g load; 10 mm ball
Hardness, Knoop	120	120	Converted from Brinell Hardness Value
Hardness, Rockwell A	40	40	Converted from Brinell Hardness Value
Hardness, Rockwell B	60	60	Converted from Brinell Hardness Value
Hardness, Vickers	107	107	Converted from Brinell Hardness Value
Ultimate Tensile Strength	310 MPa	45000 psi	AA; Typical
Tensile Yield Strength	<u>276 MPa</u>	40000 psi	AA; Typical
Elongation at Break	<u>12 %</u>	12 %	AA; Typical; 1/16 in. (1.6 mm) Thickness
Elongation at Break	<u>17 %</u>	17 %	AA; Typical; 1/2 in. (12.7 mm) Diameter
Modulus of Elasticity	68.9 GPa	10000 ksi	AA; Typical; Average of tension and compression. Compression modulus is about 2% greater than tensile modulus.
Notched Tensile Strength	<u>324 MPa</u>	47000 psi	2.5 cm width x 0.16 cm thick side-notched specimen, K_t = 17.
Ultimate Bearing Strength	607 MPa	88000 psi	Edge distance/pin diameter = 2.0
Bearing Yield Strength	<u>386 MPa</u>	56000 psi	Edge distance/pin diameter = 2.0
Poisson's Ratio	0.33	0.33	Estimated from trends in similar Al alloys.
Fatigue Strength	<u>96.5 MPa</u>	14000 psi	AA; 500,000,000 cycles completely reversed stress; RR Moore machine/specimen
Fracture Toughness	29 MPa-m1/2	26.4 ksi-in1/2	K _{IC} ; TL orientation.
Machinability	<u>50 %</u>	50 %	0-100 Scale of Aluminum Alloys
Shear Modulus	<u>26 GPa</u>	3770 ksi	Estimated from similar Al alloys.
Shear Strength	<u>207 MPa</u>	30000 psi	AA; Typical

Analytical Hierarchy Process - AHP

- Pairwise Matrix
- Normalized Pairwise Matrix
- Criteria Weights
- Weighed Sum Vector
- Consistency Vector

AHP Chart

Table 1: Analytical Hierarchy Process

	Pairwise Comparison									
Customer Needs	Ability to Climb	Rot Detection	Data Interface	Portability	OSHA Test Standards	Modularity	Total			
Ability to Climb	-	0	1	1	1	1	4			
Rot Detection	1	1	1	1	1	1	5			
Data Interface	0	0	-	1	0	1	2			
Portability	0	0	0	-	0	1	1			
OSHA Test Standards	0	0	1	1	-	1	3			
Modularity	0	0	0	0	0	-	0			
Total	1	0	3	4	2	5				

AHP 2

Table 2: Normalized Analytical Hierarchy Process

	Normalized Pairwise Comparison									
Customer Needs	Ability to Climb	Rot Detection	Data Interface	Portability	OSHA Test Standards	Modularity	Weight			
Ability to Climb	-	0	0.33	0.25	0.5	0.2	1.28			
Rot Detection	1	-	0.33	0.25	0.5	0.2	2.28			
Data Interface	0	0	1	0.25	0	0.2	0.45			
Portability	0	0	0	-	0	0.2	0.20			
OSHA Test Standards	0	0	0.33	0.25	-	0.2	0.78			
Modularity	0	0	0	0	0	-	0			
Total	1	0	1	1	1	1				

HOC

Table 3: House of Quality Relationship Matrix

		Engineering Characteristics								
Improveme	ent Direction	↓	1	1	1	1	1			
Units		lb.	ft/s	N/A	N/A	s	N/A			
Customer Needs	Importance Weight Factor	Weight	Speed	Stability	Safety	Ease of Mounting	Maneuverability			
Ability to climb	5	9	7	9	8	5	7			
Rot Detection	5	4	5	8	9	4	8			
Data Interface	4	2	9	9	8	3	5			
Portability	3	9	3	5	3	9	8			
OSHA Test Standards	5	3	2	7	8	5	5			
Modularity	2	4	1	2	4	6	4			
Raw Sc	ore (887)	123	142	175	174	121	152			
Relative	Weight %	13.9	16.0	19.7	19.6	13.6	17.1			
Rank	Order	5	4	1	2	6	3			

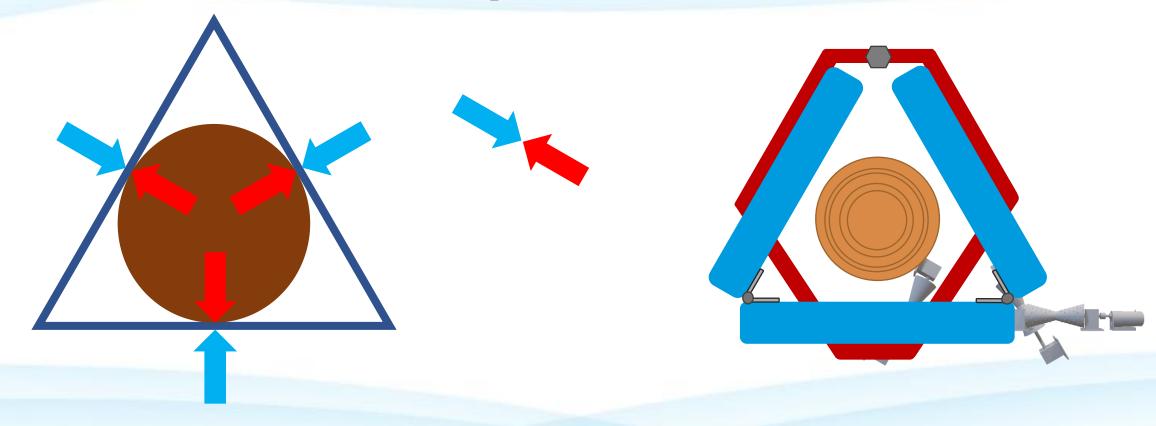
Pugh Chart 1

Table 4: Initial Pugh Chart

Selection Criteria	Datum	Variable Arm Climber	Rollercoaster Gripper	Counter- Weight Triangle Hybrid	Serpent Robot	Hybrid Bike Design	Triangle Climber	Batmobile Climber
Vertical Traversal Speed		-	+	-	-	-	-	+
Stability	Bike Climber	S	+	S	+	+	+	-

Weight		-	-	-	-	-	+	+
Ease of Mounting		1	ı	ı	1	ı	-	+
Portability		S	1	-	-	-	+	+
Modularity		S	+	+	-	S	+	-
Simplicity		-	-	-	-	-	-	-
Number	of Pluses	0	3	1	1	1	4	4
Number	Minuses	4	4	5	6	5	3	3
Numbe	er of S's	3	0	1	0	1	0	0

Pugh Chart 2


Table 5: Second Pugh Chart

Selection Criteria	Datum	Triangle Climber	Batmobile Climber	Variable Arm Climber
Vertical Traversal Speed		+	+	-
Stability		+	-	S
Weight		+	+	+
Ease of Mounting	Roller Coaster Gripper	+	+	+
Portability		S	+	-
Modularity		+	-	S
Simplicity		+	+	-
Number of	Number of Pluses		5	2
Number M	Iinuses	0	2	3
Number	of S's	1	0	2

Project Management

Backup Slides

Tinker's Workshop

