

Technical Presentation

Team 057 - SAE Aero Design Competition

Team Introductions

Aerodynamics & Propulsion Team

Sasindu Pinto: Project /Aeronautics/Propulsion Engineer Noah Wright: Aerodynamics Engineer Michenell Louis-Charles: Thermal Fluids Engineer/Financial Chair

Cameron Riley: Materials/Hardware Engineer

Adrian Moya: Systems/Hardware Engineer

2

Team Introductions

Geometric Integration

Lauren Chin

Lift and Control Surface Engineer/Meeting Coordinator

Joseph Figari

Fuselage and Payload Engineer/Financial Chair

Jacob Pifer

Project Engineer (Geometrics) and Manufacturing Engineer

Sponsor and Advisors

Florida Space Grant Consortium: Funding Sponsor Seminole RC Club -Tallahassee: Equipment/Personnel Sponsor Dr. Chiang Shih: Professor & AME Center Director Advisor Dr. Simone Hruda: Professor & Undergraduate Advising Coordinator

Noah Wright

Team Objective

The objective is to design a 3-D printed plane that takes off, completes the flight path, and lands safely while carrying a payload.

Cameron Riley

Key Goals and Assumptions

- Achieve lift
- Maintain stability in air
- Printing error tolerance 0.02 in
- Weighs less than 15 lbs
- Will be flown in atmospheric conditions at sea level

Cameron Riley

Design Process

Department of Mechanical Engineering

7

jji

Design Process

Thrust Test

Calculated Static Thrust ~ 167 lbf

Cameron Riley

Sasindu Pinto

Sasindu Pinto

Design Process

Landing Gear Weight Distribution

Sasindu Pinto

Design Process

Cargo Hatch

Noah Wright

Sasindu Pinto

Design Process

Pitch Stability

Equilibrium Angle of Attack

Sasindu Pinto

Design Process

Control Surface Motion

Sasindu Pinto

Design Process

Design Process

Stability Plot

22

Material Selection

FAMU-FSU Engineering

23

Material Selection

- House of Quality found weight to be the most important design factor
- Two possible filaments could be used within project budget and competition materials rules
 PLA
 - \rightarrow LW PLA
- Torsion and bending tests done to compare strengths

Jacob Pifer

Three-Point Bending Test

Jacob Pifer

Three-Point Bending Test

PLA

Stress parallel to printing direction: 8,350 psi Stress perpendicular to printing direction: 3,360 psi LW-PLA

Stress parallel to printing direction: 6,120 psi Stress perpendicular to printing direction: 3,380 psi

Jacob Pifer

Torsion Test

- Tinius Olsen Machine used to collect data
- ★ Same types of samples used

Jacob Pifer

Torsion Test

Jacob Pifer

Torsion Test

Stress Applied Parallel to Filament Layers

LW-PLA failure stress: 471 psi

Jacob Pifer

Noah Wright

Air Flow – 0 deg AoA

Wind Tunnel Test

Negligible wake effects between wings

Noah Wright

Air Flow–5 deg AoA

200.00 171.43 142.86 114.29 85.71 57.14 28.57 0 Vorticity [1/s]

Flow Attached & No Wake

Noah Wright

Air Flow–5 deg AoA

Wind Tunnel Test

Noah Wright

Air Flow – 12 deg AoA

Vorticity [1/s]

Flow not attached to the wings - Stall

Noah Wright

Air Flow – 12 deg AoA

Wind Tunnel Test

Flow separation effecting the main wing

Noah Wright

Department of Mechanical Engineering

Cameron Riley

Summary

- ★ A Canard Design is possible
 - ★ Tail wing needed for this layout
- Cargo bay between 2 major wings makes the plane stable
- Battery and cargo plate locations are adjustable to alter CG position
- Gear/belt mechanism used to operate control surfaces

Cameron Riley

Summary

- LW-PLA & PLA used in making the plane
- Landing gear set up meets the weight distribution guidelines
- We are working to do a test flight with the Seminole RC Club

Jacob Pifer

Linked in Information

Backup Slides

Department of Mechanical Engineering

References

Aircraft Design: A Systems Engineering Approach. M.H. Sadraey. 2013. 1st Edition. John Wiley Publications.

Basics of RC Model Aircraft Design: Practical Techniques for building better models. A. Lennon. 1999. Air Age Inc.

Fundamentals of Aerodynamics. John D. Anderson Jr. 2011. 5th Edition. McGraw Hill Publications.

Fuselage Shapes. Academic. N.d. <u>https://enacademic.com/dic.nsf/enwiki/109692</u>

SAE Aero Design Competition 2021 Rule Book. Available on: https://public.3.basecamp.com/p/38Lpy4uyTLpNkwTZbtwjgtBZ

Tail Types. What-When-How. N.d. <u>http://what-when-how.com/flight/tail-designs/</u>

Cameron Riley

Redesigned Plane Analysis

Sasindu Pinto

Jacob Pifer

45

Sasindu Pinto

Design Process

Yaw Stability

Sasindu Pinto

Wind Tunnel Test – Smoke Test

Michenell Louis-Charles

PIV Analysis

Wind Tunnel Test – PIV Test Video

Photosensitive Video

PIV Test

Wind Tunnel Test – PIV 0 deg

PIV Test

Wind Tunnel Test – PIV 5 deg

PIV Test

Wind Tunnel Test – PIV 12 deg

Sasindu Pinto

Design Process

XFLR5 Analysis

Current Wing Layout in XFLR5

Noah Wright

Department of Mechanical Engineering

Payload Prediction

Assuming Constant Temperature

55

Stability

Stability Plot – No Tail

Lift

Stability

Stability

Neutral Point

58