

Design Review 4

Team 507 - SAE Aero Design – Aero and Propulsion Team

Team Introductions

Sasindu Pinto: Project /Aeronautics/Propulsion Engineer Noah Wright: Aerodynamics Engineer

Cameron Riley: Materials/Hardware Engineer

Michenell Louis-Charles: Thermal Fluids Engineer/Financial Chair

Adrian Moya: Systems/Hardware Engineer

Sponsor and Advisors

Florida Space Grant Consortium: Funding Sponsor Seminole RC Club: Equipment/Personnel Sponsor

Dr. Chiang Shih: Professor & AME Center Director Advisor

Presenter: AM

Team Objective

The objective of the aero-propulsion team is to ensure that the plane takes off and lands while carrying a payload while completing the flight path.

Presenter: AM

4

Presenter: AM

Presenter: AM

V

Key Definitions

Presenter: AM

7

Key Definitions

Presenter: AM

Key Definitions

Presenter: AM

Fall Semester Review

Presenter – Adrian Moya

10

Project Background

Plane designed to be entered in SAE Aero Design Competition East

- Only participating in the Design Knowledge Part due to financial constraints and heath risks

Presenter: AM

Key Goals

- The plane takeoff, cruise, and land while carrying a cargo load
- The plane carries a minimum of one soccer ball as the cargo load

- Will be flown in atmospheric conditions at sea level
- Motors and electronics will be store bought and not custommade

Presenter: AM

Customer Needs

Land within 400 ft

Takeoff within 100 ft

Presenter: AM

Customer Needs A signature Innovation Canard

Presenter: AM

Functional Decomposition

Presenter: AM

Department of Mechanical Engineering

Targets and Metrics

- Generate Lift
 - Coefficient of Lift ~ Greater than 1
- Max Angle of Attack (AoA)
 - For a canard design, AoA< angle between Mean Aerodynamic Centers of the wing
- Weight
 - Less than 55 lbs

Concept Generation

- Methods used
 - Morphological Analysis
 - Biomimicry
 - Competitive Benchmarking
 - Crapshoot

Presenter: AM

Design concepts

Department of Mechanical Engineering

Medium and High Fidelity Concepts

1. Boomtown

2. Rutan Long EZ

3. Rutan Quickie Q2

4. Boeing 747 Dreamlifter

5. Cessna 208 Grand Caravan

6. OMAC Laser 300

7. Aero Spacelines Super Guppy

8. Kawasaki C-2

Presenter: AM

Customer Needs Considered

Engineering Characteristics

Concept Selection - House of Quality

	House of Quality Engineering Characteristics (***Erom Main Targets***)												
										,			-
Improvement Direction		-	•	•		-	-	-		•	-		_
Units		bf	lbf l	bf	degrees	ft/s	ft/s^2	degrees	seconds	lbs	ft/s^2	psi	psi
Customer Requirements	Importance Weight Factor	Lift	Drag	Thrust	Max Angle of Attack	Stall Speed	Acceleration	Control Surface Movement	Loading/ Unloading Time	Weight	Deceleration	loint Strength	Material Strength
1. Material	1		1					0 2		9		9	9
2. Stability	6	9	3	3				9					
3. CG in front of CP	10	9	3	9	9	9 9		9		3			
4. Meet takeoff/landing	7	Q	3	٥			c				Q		
requirements	,	5	J	5									
5. Wingspan meets restrictions	7	9	3		3	3 3		1				3	3
6. Sufficient Power	5	1	1	3			3	3		1	. 1		
7. Maneuverability	4				3	3 3		9		3		3	1
8. Light Weight	6	3		3			3			9	3		
9. Touch-down Impact	2							3		3	9	9	9
10. Ground Controls	7							1					
11. Carry the Minimum Cargo Load													
Required	8	9		3			3	6	9	9	3	9	9
12. Easy to Load/Unload	1								9	3		3	
Raw Score		365	96	228	123	3 123	120	215	81	191	128	135	124
Relative Weight %		18.92	4.98	11.82	6.38	6.38	6.22	11.15	4.20	9.90	6.64	7.00	6.43
Rank Order		1	11	2	(5 6	5 10) 3	12	. 4	. 8	5	9

Presenter: AM

Pugh Chart 2

Pugh Chart 2			Conce	epts
		Hig	ςh	Medium
Selection Criteria	Concept 2	1	3	6
Lift		-	+	-
Thrust		S	S	S
	Datura			
Control Surface Movement	Datum	+	+	+
Weight		-	-	-
Joint Strength		S	S	S
# of pluses		1	2	. 1
# of S's		2	2	. 2
# of Minuses		2	1	. 2

Presenter: AM

All Criteria Comparison Plots

Criteria Comparison Matrix - AHP

	De	velopment	t of a Car	ndidate set of C	riteria W	/eights {W}		
Criteria Comparison Matrix								
		Lift	Thrust	Control Surfac Movement	e	Weight	Joint Strength	
Lift		1.00	0.33	3	3.00	9.00	9.00	
Thrust		3.00	1.00)	3.00	9.00	9.00	
Control Surface Movement Weight		0.33 0.11	0.33 0.11	3 L	1.00 0.20	5.00 1.00	3.00 0.11	
Joint Strength		0.11	0.11	L	0.33	9.00	1.00	
Sum		4.56	1.89	9	7.53	33.00	22.11	
λ Average Consistency	Cl Cc In	l onsistenc idex	су (Гу (CR Consistency Ratio			CR<	
6.	053		0.027		0.051			

Presenter: AM

FAMU-FSU Engineering

Lift Comparison for Concepts - AHP

Concept 3 > Concept 6 > Concept 1

Concept 3: Rutan Quickie Q2

Concept 6: OMAC 300 Laser Plane

Concept 1: Boomtown

Presenter: AM

Final Rating & Alternative Values - AHP

		Alternative				
Selection Criteria	Concept 1	Concept 2	Concept 6		Concept	Value
Lift	0.243	0.669	•	0.088	Concept 1	0.292
Thrust	0.333	0.333		0.333	Concent 3	0 411
Control Surface Movement	0.236	0.110		0.654	concept s	0.111
Weight	0.260	0.633		0.106	Concept 6	0.297
Joint Strength	0.333	0.333		0.333		
		3			birth 6 Preser	nter: AM

Concept Comparison- AHP

Chosen Design

Concept 3: Rutan Quickie Q2

Thrust Test and Landing Gear Configuration

Sasindu Pinto

Thrust – Calculations

Calculations

- Static Thrust Calculated ~ 167 lbf
 - Calculated thrust usually 15-30% less than actual static thrust
- Calculated dynamic thrust shown in the graph to the right

Presenter: SP

Thrust – Experimental Test

Landing Gear Positioning

Presenter: SP

Weight Distribution

Presenter: SP

Dimensions, Initial CAD Design & CFD

Presenter – Adrian Moya

Dimensions – Plane

Presenter: AM

Dimensions – Wing Placement

Distance from the Leading Edge of the Plane to Leading Edge of the Wing

Distance from the Top of the Fuselage to chord line

Department of Mechanical Engineering

Presenter: AM

Dimensions – Wings

Presenter: AM

Dimensions – Wings

Presenter: AM

Initial CFD – Shell Properties

Presenter: AM

Initial CFD – With Propeller & Landing Gear

Presenter: AM

41

Vorticies below the fuselage

10000.00 - 8571.43 - 7142.86 - 5714.29 - 4285.71 - 2857.14 - 1428.57 0 Vorticity [1/s]

Cut Plot 2: contours

CFD – Wing Vorticity

More vorticity due to concave shape on the bottom

Main Wing

Tail Wing

Relatively less vorticity as the shapes are more symmetric

Presenter: AM

CFD – Wing Turbulence

Turbulence Intensity [%]

Negligible wake effects between wings

Presenter: AM

CFD – Fuselage Turbulence

Turbulence Effects Negligible

Presenter: AM

CFD – Turbulence With the Propeller

Tail Wing Turbulence Near the Centerline

Ground Effects

Presenter: AM

Xfoil Analysis

Presenter: AM

Xfoil Analysis

Optimum Performance Angle: 5 deg

Presenter: AM

Department of Mechanical Engineering

Stability Calculations

Presenter – Sasindu Pinto

Department of Mechanical Engineering

Pitch Stability – Design Considerations

Positive Trim at 0 deg Angle of Attack

Presenter: SP

Pitch Stability – Design Considerations

Positive Equilibrium Angle of Attack

Presenter: SP

Pitch Stability – Free Body Diagram

Lift

Drag

Presenter: SP

Pitch Stability – Initial Stability Plot

Positive Trim

Presenter: SP

Pitch Stability – Initial Stability Plot

Negative Equilibrium Angle of Attack

Presenter: SP

Pitch Stability – Design Adjustments

Addition of a Tail Wing

Presenter: SP

Pitch Stability – Design Adjustments

Presenter: SP

Pitch Stability – Final Stability Plot

Positive Trim

Positive Equilibrium Angle of Attack

Presenter: SP

Pitch Stability – Outcomes

Equilibrium Angle of Attack

Presenter: SP

~3.125 deg

Pitch Stability – Neutral Point

Neutral Point (NP) – Point about which Cm is Zero

NP is behind CG before equilibrium AoA

NP is ahead of CG after equilibrium AoA

Presenter: SP

Pitch Stability – Outcomes - Elevator

Presenter: SP

Pitch Stability – Outcomes - Elevator

Aileron Dimensions and Deflection

Presenter: SP

Aileron Dimensions

Department of Mechanical Engineering

Aileron Deflection

Department of Mechanical Engineering

Engineering

Rudder Dimensions and Deflection

Presenter: SP

Rudder Dimensions

Department of Mechanical Engineering

Roll Stability – Design Considerations

Presenter: SP

Roll Stability – Operation

Presenter: SP

Yaw Stability – Design Considerations

Departmen. ບາ Mechanica ແລງmeering

Yaw Stability – Operation

Presenter: SP

Control Surface Servos

• A contact at the RC club strongly recommended not using the servo brand currently owned by the COE and suggested more reliable options

Hitech HS-485HB

Old Vs. New Weight (oz.) 1.59 | 1.0

Operating Voltage 4.8V- 6V | 6V to 8.4V

Max Torque (oz-in) 83 | <mark>149</mark>

> Price \$20 | <mark>\$45</mark>

KST X10 Wing Servo

Presenter: SP

Current Work – CAD Assistance

Department of Mechanical Engineering

Current Work – Design Report

- Required for the design knowledge event
 - Minimum page amount 30 pages
- Includes the complete design process and the manufacturing event
- Was submitted on 01/18/2021

SAE Aero Design East Competiton 2021 Design Report

FAMU-FSU College of Engineering Team 057 Group Members: Lauren Chin Joseph Figari

Michenell Louis-Charles

Adrian Moya

Jacob Pifer

Sasindu Pinto Cameron Riley

Noah Wright

Presenter: SP

73

Future Work – Wiring and Electronics

74

Project Timeline – Spring

References

Aircraft Design: A Systems Engineering Approach. M.H. Sadraey. 2013. 1st Edition. John Wiley Publications.

Basics of RC Model Aircraft Design: Practical Techniques for building better models. A. Lennon. 1999. Air Age Inc.

Fundamentals of Aerodynamics. John D. Anderson Jr. 2011. 5th Edition. McGraw Hill Publications.

Fuselage Shapes. Academic. N.d. <u>https://enacademic.com/dic.nsf/enwiki/109692</u>

SAE Aero Design Competition 2021 Rule Book. Available on: https://public.3.basecamp.com/p/38Lpy4uyTLpNkwTZbtwjgtBZ

Tail Types. What-When-How. N.d. http://what-when-how.com/flight/tail-designs/

Presenter: AM

Linked in Information

77

Backup Slides

FAMU-FSU Engineering

78

Markets and Stakeholders

Markets

- Primary
 - **SAE** Aero Design Competition
 - Madvisors
 - Sponsors
- m Secondary
 - m Professionals in the Aviation field
 - Aviation Companies
 - RC Hobbyists
 - Scholars that reference this project

- Dr. McConomy and Dr. Shih
- SAMU-FSU College
 - of Engineering
- SAE Design Competition
- RC Pilots

Presenter: CR

Design concepts

Design Concepts

Fuselage Layouts

- 1: <u>Subsonic</u>
- 2: High-speed / supersonic
- 3: High-capacity subsonic

- 4: High-maneuverability supersonic
- 5: <u>Flying boat</u>
- 6: <u>Hypersonic</u>

Morphological Analysis

Morphological	Analysis				
Wing Layout	Wing Type	Wing Position	Control Surfaces	Fuselage	Tail
Main-Tail	Main - Forward Swept Tail- Symmetric (x-29)	High Wing	Aileron	Bullet	Boom-Mounted Inverted V
Trapezoidal	Delta Wing	Mid Wing	Flaps	Flying Boat	H-Tail
Canard-Main	Main - Elliptical Tail - Symmetric	Low Wing	Elevators	Double Boom	Twin-Tail
	Main - Trapezoidal Tail - Symmetric				Tapered
					Triple-Tail
					Y-Tail

Competitive Benchmarking

Rutan Long E-Z: Small composite plane with canards & tip sails

Cessna 208 Grand Caravan: Typical bush plane with extra cargo space

Kawasaki C-2: Japanese military cargo plane

Binary Pairwise Comparison

	Binai	ry Pai	rwise	Com	barisc	n							
	1	2	3	4	5	6	7	8	9	10	11	121	Total
1. Material	-	0	0	0	0	0	0	1	0	0	0	0	1
2. Stability	1	-	0	0	0	1	1	1	1	0	0	1	6
3. CG in front of CP	1	1	-	1	1	1	1	1	1	1	1	1	10
4. Meet takeoff/landing requirements	1	1	0	_	1	1	1	0	1	0	0	1	7
			-		_		_	•		•	-		-
5. Wingspan meets restrictions	1	1	0	0	-	1	1	1	1	0	0	1	7
6. Sufficient Power	1	0	0	0	0	-	0	0	1	1	1	1	5
7. Maneuverability	1	0	0	0	0	1	-	0	1	0	0	1	4
8. Light Weight	0	0	0	1	0	1	1	-	1	1	0	1	6
9. Touch-down Impact	1	0	0	0	0	0	0	0	-	0	0	1	2
10. Ground Controls	1	1	0	1	1	0	1	0	1	-	1	1	7
11. Carry the Minimum Cargo Load Required	1	1	0	1	1	0	1	1	1	0	_	1	8
	-	-	U	-	-	U	-	-	-	Ŭ		-	U
12. Easy to Load/Unload	1	0	0	0	0	0	0	0	0	0	0	-	1
Total	10	5	0	4	4	6	7	5	9	4	3	10	-

Presenter: AM

Binary Pairwise Comparison

	Binai	ry Paiı	rwise	Comp	barisc	n							
	1	2	3	4	5	6	7	8	9	10	11	12	Total
1. Material	-	0	0	0	0	0	0	1	0	0	0	0	1
2. Stability	1	-	0	0	0	1	1	1	1	0	0	1	6
3. CG in front of CP	1	1	-	1	1	1	1	1	1	1	1	1	10
4. Meet takeoff/landing requirements	1	1	0	-	1	1	1	0	1	0	0	1	7
5. Wingspan meets restrictions	1	1	0	0	_	1	1	1	1	0	0	1	7
6. Sufficient Power	1	0	0	0	0	-	0	0	1	1	1	1	5
7. Maneuverability	1	0	0	0	0	1	-	0	1	0	0	1	4
8. Light Weight	0	0	0	1	0	1	1	-	1	1	0	1	6
9. Touch-down Impact	1	0	0	0	0	0	0	0	-	0	0	1	2
10. Ground Controls	1	1	0	1	1	0	1	0	1	-	1	1	7
11. Carry the Minimum Cargo Load	1	1	0	1	1	0	1	1	1	0		1	o
Required	T	T	U	T	T	U	T	T	T	U	-	T	ð
12. Easy to Load/Unload	1	0	0	0	0	0	0	0	0	0	0	-	1
Total	10	5	0	4	4	6	7	5	9	4	3	10	-

Presenter: AM

HOQ

					House of Q	uality		: /*** - •	4-: T+-*:	**\			
		•	_	•	Engine	ering Cn	aracterist	ICS (***From I	viain Targets*	**)			
Improvement Direction		T	➡	T	1	1	T	1	•	➡	T	1	
Units		lbf	lbf	bf	degrees	ft/s	ft/s^2	degrees	seconds	lbs	ft/s^2	psi r	osi
Customer Requirements	lmportance Weight Factor	Lift	Drag	Thrust	Max Angle of Attack	Stall Speed	Acceleration	Control Surface Movement	Loading/ Unloading Time	Weight	Deceleration	Joint Strength	Material Strength
1. Material	1		1							9		9	9
2. Stability	6	9	3	3				g					
3. CG in front of CP	10	9	3	9	g	9 9		g		3			
 Meet takeoff/landing requirements 	7	9	3	9			ç)			9		
5. Wingspan meets restrictions	7	9	3	2	3	3	2	1		1	1	3	3
7 Maneuverability	ر ۸	T	1	5	-		3	, J		2	1	2	1
8 Light Weight	4	3		3	~	, .	2	2		9	3	J	1
9 Touch-down Impact	2	5		J				,		3	9	9	9
10. Ground Controls	7							1		5		5	5
11. Carry the Minimum Cargo Load Required	8	9		3			3	-	9	9	3	9	9
12. Easy to Load/Unload	1								9	3		3	
Raw Score		365	96	228	123	123	120	215	81	191	128	135	124
Relative Weight %		18.92	4.98	11.82	6.38	6.38	6.22	11.15	4.20	9.90	6.64	7.00	6.43
Rank Order		1	11	2	e	6 E	5 10) 3	12	4	8	5	9

					House of Q	uality		• /***= • *	ት ት /			
		•	_	•	Engine	ering Ch	aracterist	ICS (***From N	/lain largets*	**)	•		
Improvement Direction		T	➡	T	T	1	T	T	➡	➡	T	T	
Units		lbf	lbf	bf	degrees	ft/s	ft/s^2	degrees	seconds	lbs	ft/s^2	psi r	osi
Customer Requirements	lmportance Weight Factor	Lift	Drag	Thrust	Max Angle of Attack	Stall Speed	Acceleration	Control Surface Movement	Loading/ Unloading Time	Weight	Deceleration	Joint Strength	Material Strength
1. Material	1		1							9		9	9
2. Stability	6	9	3	3				9					
3. CG in front of CP	10	9	3	9	ç) 5		9		3			
4. Meet takeoff/landing	7	٩	3	٥			с				Q		
requirements	,	J	J	5				, 					
5. Wingspan meets restrictions	7	9	3		3	3 3		1				3	3
6. Sufficient Power	5	1	1	3			3	3		1	1	_	
7. Maneuverability	4				3	3 3	6	9		3		3	1
8. Light Weight	6	3		3			3			9	3	i	
9. Touch-down Impact	2							3		3	9	9	9
10. Ground Controls	7							1					
11. Carry the Minimum Cargo Load	0	0		2			-				2		0
12 Easy to Load/Unload	8	9		3			3		9	9	3	9	9
Paw Score	1	265	06	220	103	102	100	215	01	101	100	2 125	124
Relative Weight %		12 02	1 00	220 11 07	12: 6 20	2 6 20	6 22	215 11 15	10	191	120		6.42
Rank Order		10.92	4.90	11.02	0.50		0.22	. 11.15	4.20	9.90	0.04	2 5	0.45
		T	11	2	,	, (, 10	, .	12	. 4	0	J	9

					House of Qu	ality		:	Acia Tanasta*:	**\			
			_		Engine			ICS (****From F	viain Targets*	···) _			_
Improvement Direction		T	+	T	T	T	T	T	+	➡	T	T	-
Units		bf	lbf l	bf	degrees	ft/s	ft/s^2	degrees	seconds	lbs	ft/s^2	psi p	osi
Customer Requirements	Importance Weight Factor	Lift	Drag	Thrust	Max Angle of Attack	Stall Speed	Acceleration	Control Surface Movement	Loading/ Unloading Time	Weight	Deceleration	Joint Strength	Material Strength
1. Material	1		1							9		9	9
2. Stability	6	9	3	3				9					
3. CG in front of CP	10	9	3	9	g	9		9		3			
 Meet takeoff/landing requirements 	7	9	3	9			9				9		
5. Wingspan meets restrictions	7	9	3	2	3	3	2	1				3	3
6. Sufficient Power	5	1	1	3	2	2	3	3		1	1	2	4
7. Maneuverability	4	2		2	3	3	2	9		3	2	3	T
8. Light Weight	0	5		5			3	2		9	3	0	0
10 Ground Controls	2							1		5	9	9	9
11. Carry the Minimum Cargo Load Required	8	9		3			3		9	9	3	9	9
12. Easy to Load/Unload	1								9	3		3	
Raw Score		365	96	228	123	123	120	215	81	191	128	135	124
Relative Weight %		18.92	4.98	11.82	6.38	6.38	6.22	11.15	4.20	9.90	6.64	7.00	6.43
Rank Order		1	11	2	6	6	10	3	12	. 4	8	5	9

					House of Qu	uality			4-: T+-*	**\			
			_	•	Engine	ering Ch	aracterist	ICS (***From I	viain Targets*	**)			
Improvement Direction		T	➡	T	Î	T	T	Î	-	➡	T	T	
Units		bf	lbf	bf	degrees	ft/s	ft/s^2	degrees	seconds	lbs	ft/s^2	psi p	osi
Customer Requirements	lmportance Weight Factor	Lift	Drag	Thrust	Max Angle of Attack	Stall Speed	Acceleration	Control Surface Movement	Loading/ Unloading Time	Weight	Deceleration	Joint Strength	Material Strength
1. Material	1		1				·			9		9	9
2. Stability	6	9	3	3				9					
3. CG in front of CP	10	9	3	9	9	9		9		3			
 Meet takeoff/landing requirements 	7	9	3	9			9				9		
5. Wingspan meets restrictions	7	9	3		3	3		1				3	3
6. Sufficient Power	5	1	1	3			3	3		1	1		
7. Maneuverability	4				3	3		9		3		3	1
8. Light Weight	6	3		3			3			9	3		
9. Touch-down Impact	2							3		3	9	9	9
10. Ground Controls	7							1					
11. Carry the Minimum Cargo Load Required	8	9		3			3		g	9	3	9	9
12. Easy to Load/Unload	1								9	3		3	
Raw Score		365	96	228	123	123	120	215	81	191	128	135	124
Relative Weight %		18.92	4.98	11.82	6.38	6.38	6.22	11.15	4.20	9.90	6.64	7.00	6.43
Rank Order		1	11	2	6	6	10	3	12	4	8	5	9

Presenter: SP

					House of Qu	uality		• (***=	. . .	ν Ψ γ			
		•	_	•	Engine	ering Ch	aracterist	ICS (***From I	/lain Targets*	**)			
Improvement Direction		T	➡	T	Ť	T	T	T	➡	➡	1	1	
Units		lbf	lbf	lbf	degrees	ft/s	ft/s^2	degrees	seconds	lbs	ft/s^2	psi r	osi
Customer Requirements	lmportance Weight Factor	Lift	Drag	Thrust	Max Angle of Attack	Stall Speed	Acceleration	Control Surface Movement	Loading/ Unloading Time	Weight	Deceleration	Joint Strength	Material Strength
1. Material	1		1							9		9	9
2. Stability	6	9	3	3				g					
3. CG in front of CP	10	9	3	9	9	9		g		3			
 Meet takeoff/landing requirements 	7	9	3	9			ç				9		
5. Wingspan meets restrictions	7	9	3		3	3		1				3	3
6. Sufficient Power	5	1	1	3	2	2	ತ	5 3		1	1	2	
7. Maneuverability	4	2		2	3	5	-	9		3	2	3	T
8. Light weight	0	3		3			3	-		9	3	0	0
9. Touch-down impact	2							1		3	9	9	9
11. Carry the Minimum Cargo Load Required	8	9		3			3		9	9	3	9	9
12. Easy to Load/Unload	1								9	3		3	
Raw Score		365	96	228	123	123	120	215	81	191	128	135	124
Relative Weight %		18.92	4.98	11.82	6.38	6.38	6.22	11.15	4.20	9.90	6.64	7.00	6.43
Rank Order		1	11	2	6	6	10	3	12	4	8	5	9

Presenter: SP

					House of Q	uality			Acia Taracto*	**\			
			_		Engine	ering Cn	aracterist	CICS (***From I	viain Targets**	····) 			
Improvement Direction		T	➡	T	T	T	T	T	+	➡	T	T	=
Units		lbf	lbf	lbf	degrees	ft/s	ft/s^2	degrees	seconds	lbs	ft/s^2	psi r	osi
Customer Requirements	lmportance Weight Factor	Lift	Drag	Thrust	Max Angle of Attack	Stall Speed	Acceleration	Control Surface Movement	Loading/ Unloading Time	Weight	Deceleration	Joint Strength	Material Strength
1. Material	1		1							9		9	9
2. Stability	6	9	3	З	h			ç					
3. CG in front of CP	10	9	3	ç) <u>c</u>)	g		3			
 Meet takeoff/landing requirements 	7	9	3	ç	,		c	9			g)	
5. Wingspan meets restrictions	7	9	3		3	8 3	8	1				3	3
6. Sufficient Power	5	1	. 1	3			3	3 3		1	1	_	
7. Maneuverability	4				3	3 3	8	ç		3		3	1
8. Light Weight	6	3		3			3	3		9	3		
9. Touch-down Impact	2							3		3	9	9	9
10. Ground Controls	7							1					
11. Carry the Minimum Cargo Load Required	8	9		3			3	3	9	9	3	9	9
12. Easy to Load/Unload	1								9	3		3	
Raw Score		365	96	228	123	123	s —):	215	81	191	128	135	124
Relative Weight %		18.92	4.98	11.82	6.38	3 38	6.22	11.15	4.20	9.90	6.64	7.00	6.43
Rank Order		1	. 11	2				3	12	4	8	5	9

Presenter: SP

Pugh Chart 1				С	onc	ept	S			
		ł	ligh	Ì	Medium					
Selection Criteria	2020 Competition Entry	1	2	3	4	5	6	7	8	
Lift		+	+	+	-	-	+	-	-	
Thrust		S	S	S	S	S	S	S	S	
	ΠΑΤΙΙΜ									
Control Surface Movement	DATOM	+	+	+	+	S	+	S	S	
Weight		-	S	-	-	-	S	-	S	
Joint Strength		+	+	+	+	+	+	+	+	
# of pluses		3	3	3	2	1	3	1	1	
# of S's		1	2	1	1	2	2	2	3	
# of Minuses		1	0	1	2	2	0	1	1	

Pugh Chart 1		(Concepts	
		High	Medium	
Selection Criteria	2020 Competition Entry		I	
Lift				
Thrust		:		
Control Surface Movement	DATUM			
Weight			d	
Joint Strength			U	
# of pluses				
# of S's		т с т		
# of Minuses		1 0 1	L 2 2 0 1 1	

Presenter: SP

Pugh Chart 1				С	onc	ept	S		
		ł	ligh	1		Me	ediu	m	
Selection Criteria	2020 Competition Entry	1	2	3	4	5	6	7	8
Lift		+	+	+	-	-	+	-	-
Thrust		S	S	S	S	S	S	S	S
	ΠΔΤΗΜ								
Control Surface Movement	DATOM	+	+	+	+	S	+	S	S
Weight		-	S	-	-	-	S	-	S
Joint Strength		+	+	+	+	+	+	+	+
# of pluses		3	3	3	2	1	3	1	1
# of S's		1	2	1	1	2	2	2	3
# of Minuses		1	0	1	2	2	0	1	1

Pugh Chart 2		Concepts			
		Hi	gh	Mediur	m
Selection Criteria	Concept 2	1	1 3	3	6
Lift		-	+	-	
Thrust		S	S	S	
	Datum				
Control Surface Movement	Datum	+	+	+	
Weight		-	-	-	
Joint Strength		S	S	S	
# of pluses		1	1 2	2	1
# of S's		2	2 2	2	2
# of Minuses		2	2 1	L	2

Pugh Chart 2		Concepts			
		Hi	зn	Medium	n
Selection Criteria	Concept 2	1	. 3	3	6
Lift			+	-	
Thrust		S	S	S	
	Datum				
Control Surface Movement	Datum	+	+	+	
Weight		-	-	-	
Joint Strength		S	S	S	
# of pluses		1	. 2	2	1
# of S's		2	. 2	<u>></u>	2
# of Minuses		2	. 1	L	2

AHP Criteria Comparison

Criteria Comparison - AHP

Lift vs Thrust

Thrust > Lift

Presenter: SP

Lift vs Control Surface

Presenter: SP

Criteria Comparison - AHP

Thrust vs Control Surface

Thrust > Control Surface

Presenter: SP

Lift Comparison for Concepts - AHP

Just the main wing

Concept 1: Boomtown

Presenter: SP

Lift Comparison for Concepts - AHP

Concept 3: Rutan Quickie Q2

Presenter: SP

Lift Comparison for Concepts - AHP

Lower Wingspan + Delta Restriction

Concept 6: OMAC 300 Laser Plane

Presenter: SP

ift Comparison Matrix - AHD			Comp	Comparison for All Criteria		
130			Thrust CSM	Weight	Joint Strength	
Comp	arison				★	
					1	
cept <mark>C</mark>	Concept					
3	,	Concept 6				
1.00	0.33	3.00			2	
3.00	1.00	7.00			3	
0.33	0.14	1.00				
4.33	1.48	11.00				
CR ency <mark>Con</mark> Rati 0352	isistency io 0.00676	CR<0.	1	horen	6	
	Comp Cept (3 1.00 3.00 0.33 4.33 (4.33 (CR CR CR CR CA CR CA CR CA CA CA CA CA CA CA CA CA CA	ComparisonComparisonCeptConcept1.000.333.001.000.330.144.331.48CR Consistency Ratio0.3520.00676	Comparison Cept Concept of con	Comparison Inust Com cept Concept Concept 6 Concept 6 1.00 0.33 3.00 3.00 1.00 7.00 0.33 0.14 1.00 4.33 1.48 11.00 CR CR CR ency Consistency Ratio CR CR 0.352 0.00676 CR	Comparison Image: Concept 6 1.00 0.33 3.00 1.00 0.33 0.14 1.00 1.00 0.33 0.14 1.00 0.33 0.33 0.14 0.33 0.14 0.33 0.14 0.00676 CR<<0.1	

Concept Comparison- AHP

Criteria Comparison Matrix

Development of a Candidate set of Criteria Weights {W}					
		Criteria	Comparison Matrix		
	Lift	Thrust	Control Surface Movement	Weight	Joint Strength
Lift	1.00	0.33	3.00	9.00	9.00
Thrust	3.00	1.00	3.00	9.00	9.00
Control Surface Movement	0.33	0.33	1.00	5.00	3.00
Weight	0.11	0.11	0.20) 1.00	0.11
Joint Strength	0.11	0.11	0.33	9.00	1.00
Sum	4.56	1.89	7.53	33.00	22.11

Normalized Comparison Matrix

Normalized Criteria Comparison Matrix [NormC]						
			Criteria Comparison Matrix			
	Lift	Thrust	Control Surface Movement	Weight	Joint Strength	Criteria Weight
Lift	0.22	0.18	0.40	0.27	0.41	0.295
Thrust	0.66	0.53	0.40	0.27	0.41	0.453
Control Surface Movement	0.07	0.18	0.13	0.15	0.14	0.134
Weight	0.02	0.06	0.03	0.03	0.01	0.029
Joint Strength	0.02	0.06	0.04	0.27	0.05	0.089
Sum	1.00	1.00	1.00	1.00	1.00	1.000

110

Criteria Comparison Consistency Check

Consistency Check				
{Ws}=[C]{W} Weighted Sum Vector	{W} Criteria Weights	Con={Ws}./{W} Consistency Vector		
1.911	0.490	3.899		
2.802	0.230	12.184		
0.796	0.140	5.683		
0.149	0.040	3.720		
0.478	0.100	4.780		

λ	CI	CR
Average	Consistency	Consistency
Consistency	Index	Ratio
6.053	0.027	0.051

AHP – Lift Tables

Lift Comparison Matrix

Lift Comparison					
	Concept 1	Concept 3	Concept 6		
Concept 1	1.00	0.33		3.00	
Concept 3	3.00	1.00		7.00	
Concept 6	0.33	0.14		1.00	
Sum	4.33	1.48		11.00	

Normalized Lift Comparison Matrix

Normalized Criteria Comparison Matrix [NormC]					
	Concept 1	Concept 2	Concept 6	Criteria Weight	
Concept 1	0.231	0.226	0.273	0.243	
Concept 2	0.692	0.677	0.636	0.669	
Concept 6	0.077	0.097	0.091	0.088	
Sum	1.000	1.000	1.000	1.000	
lechanical Enginee	ering			FAI Eng	

Department of M

Lift Consistency Check

Consistency Check 1					
{Ws}=[C]{W}		Con={Ws}./{W}			
Weighted Sum	{W} Criteria	Consistency			
Vector	Weights	Vector			
0.731	0.243	3.005			
2.015	0.669	3.014			
0.265	0.088	3.002			

λ	CI	CR
Average	Consistency	Consistency
Consistency	Index	Ratio
3.00703	0.00352	0.00676

AHP – Thrust Tables

Thrust Comparison

Thrust Comparison					
	Concept 1	Concept 3	Concept 6		
Concept 1	1.00	1.00		1.00	
Concept 3	1.00	1.00		1.00	
Concept 6	1.00	1.00		1.00	
Sum	3.00	3.00		3.00	

Normalized Thrust Comparison Matrix

	Normalized Criteria Comparison Matrix [NormC]				
	Concept 1	Concept 2	Concept 6	Criteria Weight	
Concept 1	0.333	0.333	0.333	0.333	
Concept 2	0.333	0.333	0.333	0.333	
Concept 6	0.333	0.333	0.333	0.333	
Sum	1.000	1.000	1.000	1.000	
artment of Mechanical Engine	ering			FAN Engl	

Thrust Consistency Check

Consistency Check 2					
{Ws}=[C]{W} Weighted Sum	{W} Criteria	Con={Ws}./{W}			
Vector	Weights	Consistency Vector			
1.000	0.333	3.000			
1.000	0.333	3.000			
1.000	0.333	3.000			

λ	CI	CR
Average	Consistency	Consistency
Consistency	Index	Ratio
3.00000	0.00000	0.00000

AHP – Control Surface Movement Tables

Control Surface Comparison Matrix

Control Surface Movement Comparison			
	Concept 1	Concept 3	Concept 6
Concept 1	1.00	3.00	0.20
Concept 3	0.33	1.00	0.20
Concept 6	3.00	5.00	1.00
Sum	4.33	9.00	1.40

Normalized Control Surface Comparison Matrix

Normalized Criteria Comparison Matrix [NormC]				
	Concept 1	Concept 2	Concept 6	Criteria Weight
Concept 1	0.231	0.333	0.143	0.236
Concept 2	0.077	0.111	0.143	0.110
Concept 6	0.692	0.556	0.714	0.654
Sum	1.000	1.000	1.000	1.000
lechanical Enginee	ring			FAN FAN

Department of M

122

Control Surface Consistency Check

Consistency Check 3			
{Ws}=[C]{W} Weighted Sum Vector	{W} Criteria Weights	Con={Ws}./{W} Consistency Vector	λ Avera Consis
0.697	0.236	2.959	2
0.320	0.110	2.898	
1.912	0.654	2.924	

_		
λ	CI	CR
Average	Consistency	Consistency
Consistency	Index	Ratio
2.92716	-0.03642	-0.07004

AHP – Weight Tables

Weight Comparison Matrix

Weight Comparison			
	Concept 1	Concept 3	Concept 6
Concept 1	1.00	0.33	3.00
Concept 3	3.00	1.00	5.00
Concept 6	0.33	0.20	1.00
Sum	4.33	1.53	9.00

Normalized Weight Comparison Matrix

Normalized Criteria Comparison Matrix [NormC]				
	Concept 1	Concept 2	Concept 6	Criteria Weight
Concept 1	0.231	0.217	0.333	0.260
Concept 2	0.692	0.652	0.556	0.633
Concept 6	0.077	0.130	0.111	0.106
Sum	1.000	1.000	1.000	1.000
echanical Engineering				

Department of M

126

Weight Consistency Check

Consistency Check 4			
{Ws}=[C]{W} Weighted Sum Vector	{W} Criteria Weights	Con={Ws}./{W} Consistency Vector	
0.790	0.260	3.033	
1.946	0.633	3.072	
0.320	0.106	3.011	

λ	CI	CR
Average	Consistency	Consistency
Consistency	Index	Ratio
3.03871	0.01936	0.03723

AHP – Joint Strength Tables

From Team 508

Department of Mechanical Engineering

128

Joint Strength Comparison Matrix (508)

Joint Strength Comparison			
	Concept 1	Concept 3	Concept 6
Concept 1	1.00	1.00	1.00
Concept 3	1.00	1.00	1.00
Concept 6	1.00	1.00	1.00
Sum	3.00	3.00	3.00

Normalized Joint Comparison Matrix (508)

Normalized Criteria Comparison Matrix [NormC]				
	Concept 1	Concept 2	Concept 6	Criteria Weight
Concept 1	0.333	0.333	0.333	0.333
Concept 2	0.333	0.333	0.333	0.333
Concept 6	0.333	0.333	0.333	0.333
Sum	1.000	1.000	1.000	1.000
echanical Engineering				

130

Department of N

Joint Strength Consistency Check(508)

Consistency Check 5			
{Ws}=[C]{W}	Con={Ws}./{W}		
Weighted Sum	{W} Criteria	Consistency	
Vector	Weights	Vector	
1.000	0.333	3.000	
1.000	0.333	3.000	
1.000	0.333	3.000	

CI	CR
Consistency	Consistency
Index	Ratio
0.00000	0.00000
	CI Consistency Index 0.00000

Final Rating

Final Rating Matrix

Final Rating Matrix			
Selection			
Criteria	Concept 1	Concept 2	Concept 6
Lift	0.243	0.669	0.088
Thrust	0.333	0.333	0.333
Control			
Surface			
Movement	0.236	0.110	0.654
Weight	0.260	0.633	0.106
Joint Strength	0.333	0.333	0.333

Backup Slides – Winter Break

Customer Needs

Loading/Unloading time – 1 min

Department of Mechanical Engineering

135

Current Work – Fluid Analysis

Eppler 423 Airfoil

Presenter: AM

Current Work – Fluid Analysis

Top Surface

Lift Force

Y-component of Normal Force 0.036 lbf

Bottom Surface

Presenter: AM

Initial CFD – Shell Properties

Presenter: AM

Fuselage Based on Lockheed X

Presenter: AM

Dorsal Fin

Dolphin Dorsal Fin

Biomimicry in Aircrafts

Presenter: AM

