EML4551-2

Design Review 5

Team 507 - SAE Aero Design – Aero and Propulsion Team

Team Introductions

Sasindu Pinto: Project /Aeronautics/Propulsion

Noah Wright: Aerodynamics Engineer

Michenell Louis-Charles: Thermal Fluids Engineer/Financial Chair

Adrian Moya: Systems/Hardware Engineer

Cameron Riley:

2

Sponsor and Advisors

Florida Space Grant Consortium: Funding Sponsor Seminole RC Club: Equipment/Personnel Sponsor Dr. Chiang Shih: Professor & AME Center Director Advisor

Michenell Louis-Charles

3

Team Objective

The objective of the aero-propulsion team is to ensure that the plane takes off, completes the flight path, and lands safely while carrying a payload.

Coefficient of Lift

Lift

Coefficient of Drag

Michenell Louis-Charles

7

Drag

Michenell Louis-Charles

Angle of Attack (AoA / Alpha)

Michenell Louis-Charles

Х

Department of Mechanical Engineering

9

Review

Presenter – Michenell Louis-Charles

10

Project Background

Plane designed to be entered in SAE Aero
Design Competition East
Only participating in the Design
Knowledge Part due to financial constraints and heath risks

Key Goals and Assumptions

The plane takeoff, cruise, and land while carrying a cargo loadWill be flown in atmospheric conditions at sea level

Michenell Louis-Charles

11

Customer Needs Canard

A signature Innovation

Michenell Louis-Charles

Targets and Metrics

- Generate Lift
 - Coefficient of Lift ~ Greater than 1
- Max Angle of Attack (AoA)
 - For a canard design, AoA< angle between Mean Aerodynamic Centers of the wing
- Weight
 - Less than 55 lbs.

Medium and High Fidelity Concepts

1. Boomtown

2. Rutan Long EZ

4. Boeing 747 Dreamlifter

DREAM

5. Cessna 208 **Grand Caravan**

6. OMAC Laser 300

7. Aero Spacelines Super Guppy

8. Kawasaki C-2

Michenell Louis-Charles

Concept Comparison- AHP

15

Chosen Design

Concept 3: Rutan Quickie Q2

Calculations

- Static Thrust Calculated ~ 167 lbf
 - Calculated thrust usually 15-30% less than actual static thrust
- Calculated dynamic thrust shown in the graph to the right

Experimental Thrust ~ 222 lbf

Initial Design Analysis

Michenell Louis-Charles

Initial Design - CFD – Wing Turbulence

Turbulence Intensity [%]

Negligible wake effects between wings

Michenell Louis-Charles

Redesigned Plane

Presenter – Cameron Riley

Department of Mechanical Engineering

20

Canard Test Print – Density Correction

Projected Weight ~ 0.109 lbs. Actual Weight – 0.211 lbs.

Initial density – 0.00245 lb./in^3

Adjusted density – 0.00474 lb./in^3

Cameron Riley

Stability Calculations and CFD

Presenter – Noah Wright

Department of Mechanical Engineering

J

Pitch Stability – Controls - Elevator

Department of Mechanical Engineering

27

Pitch Stability

Noah Wright

Roll Stability – Controls - Aileron

Roll Stability

Noah Wright

Yaw Stability – Controls - Rudder

Department of Mechanical Engineering

31

Noah Wright

32

Xfoil Analysis

Noah Wright

33

Xfoil Analysis

Optimum Performance Angle: 5 deg

Noah Wright

XFLR5 Analysis

1st Attempt Wing Layout in XFLR5

Coefficient of Moment Plot

Noah Wright

XFLR5 Analysis

Current Wing Layout in XFLR5

36

MATLAB STABILITY

MATLAB Coefficient of Moment Plot

Noah Wright

Wing Turbulence - Wake

38

Fuselage Turbulence

Noah Wright

Propeller Vorticity

Noah Wright

Current Work

Cameron Riley

Current Work – CAD Assistance

Department of Mechanical Engineering

42

Current Work – Control Surface Motion

Current Work – Wiring

Cameron Riley

Current Work – Programming

Throttle

Adjusting the transmitter settings to favor our plane

Yaw, Pitch, Roll Control

Cameron Riley

45

Current Work – Wind Tunnel Testing

FCAAP Wind Tunnel

A Wind Tunnel Experiment

Cameron Riley

46

Current Work – Wind Tunnel Testing

Cameron Riley

References

Aircraft Design: A Systems Engineering Approach. M.H. Sadraey. 2013. 1st Edition. John Wiley Publications.

Basics of RC Model Aircraft Design: Practical Techniques for building better models. A. Lennon. 1999. Air Age Inc.

Fundamentals of Aerodynamics. John D. Anderson Jr. 2011. 5th Edition. McGraw Hill Publications.

Fuselage Shapes. Academic. N.d. <u>https://enacademic.com/dic.nsf/enwiki/109692</u>

SAE Aero Design Competition 2021 Rule Book. Available on: https://public.3.basecamp.com/p/38Lpy4uyTLpNkwTZbtwjgtBZ

Tail Types. What-When-How. N.d. http://what-when-how.com/flight/tail-designs/

Cameron Riley

Linked in Information

Cameron Riley

Backup Slides

Presenter: AM

Presenter: AM

Presenter: AM

Initial Design - Pitch Stability

Equilibrium Angle of Attack

55

Initial Design - Roll Stability

Yaw Stability – Operation

