Team 510: Indoor Air Quality of Hotspots

November 13th 2020

Eric Grogans, Leon Johnson, Emma Martin, Razhan Matipano, Whitley Pettis

Team Introductions

Eric Grogans Electrical Engineer

Leon Johnson *Test Engineer*

Emma Martin Project Manager

Razhan Matipano Research Engineer

Whitley Pettis Manufacturing Engineer

Eric Grogans

Sponsor and Advisor

FAMU-FSU College of Engineering

Honeywell

Engineering Mentor Danny White Honeywell Engineering Mentor Lauren Cobb *Honeywell*

<u>Academic Advisor</u> Neda Yaghoobian, Ph.D. *Professor* Senior Design Professor Dr. McConomy, Ph.D. Professor

Eric Grogans

Objective

The objective of the project is to measure the air quality in the FAMU-FSU College of Engineering and modify the air based on these findings to promote a healthy building environment.

Eric Grogans

Project Recap

Eric Grogans

Project Background

- → The FAMU-FSU College of Engineering is used by thousands daily
- → There are a several types spaces around the college

Sourced: eng.famu.fsu.edu, www.thebluebook.com

Eric Grogans

COVID-19

- → Air quality is especially important
- → Caused by the pathogen SARS-CoV-2
- → Carried by respiratory droplets in air

Honeywell's Needs

Monitors Air Quality

Reduces Contamination

Eric Grogans

Control System	Ventilate room	Improve Air Composition

Eric Grogans

Control System	Ventilate room	Improve Air Composition
Sense and measure air quality		Eric Grogans

Targets and Metrics

Leon Johnson

Department of Mechanical Engineering

Control System

Sense Air Quality

Concentration range of sensors

- Particulate: 0.1 µg/m³
 and 1000 µg/m³
- Gas: 0 ppm to 250 ppm

Sourced: Honeywell.com

Measure Air Quality

Accuracy of sensors

- Particulate: ±15%
- Gas: ±3%

Control Hardware *Reaction time of hardware*

• 6 seconds

Leon Johnson

Ventilate Room

Propel Air *Volumetric flowrate per person*

• 40 cfm per person

Circulate Air Number of air changes per hour

• 7

Leon Johnson

Improve Air Composition

Treat Air Number of Filters

3

•

Filter Particulates

Minimum diameter

of filterable

0.1 μm

particles

Control Air

Humidity range

• 40% to 60%

Humidity

Sanitize **Contaminants** Particulate removal percentage

- 99%

Leon Johnson

Sourced: Honeywell.com, www.cdc.gov

Methods of Validation

Inspection:

- → Verify range of sensors using data sheets
- → Verify number of filters through counting

Leon Johnson

Methods of Validation

Test Equipment:

- → Compare particulate and gas sensor readings to calibrated sensors
- → Compare humidity readings to calibrated hygrometer
- → Use particulate sensors to test effectiveness of device

Sourced: Honeywell.com, ti.com

Leon Johnson

Methods of Validation

Measure and Calculate:

- → Measure room and vent sizes using a tape measure
- → Measure air speed using anemometer
- → Use air speed and size measurements to calculate volumetric flowrate and air changes per hour
- → Use a stopwatch to test hardware response time

Leon Johnson

Concept Generation and Selection

Leon Johnson & Emma Martin

Faculty

Department of Mechanical Engineering

25

Leon Johnson

Maintenance Staff

Leon Johnson

Sourced: Honeywell.com

Concept Generation Methods

Brainstorming

Forced Analogy

Biomimicry

Morphological Chart

Emma Martin

Mobile Air Purifier

Emma Martin

28

Mobile Sensing and Cleaning Station

Emma Martin

29

Dual Cart Sensing and Cleaning Stations

Cleaning Equipment

House of Quality

- → Functions and customer needs were converted into weighted engineering characteristics
- → Most important engineering characteristics:

Department of Mechanical Engineering

Pugh Chart

- → Uses engineering characteristics to eliminate concepts
- → Two lowest scoring concepts were eliminated

Pugh Chart

- → Uses engineering characteristics to eliminate concepts
- → Two lowest scoring concepts were eliminated

Analytic Hierarchy Process

Calculation based decision making

Cleaning air was weighted heavily

Dual cart concept performed the best

Emma Martin

Final Selection

Emma Martin

Future work

Emma Martin

Key Takeaways

- → The dual cart sensing and cleaning station was chosen as the final design
- → The design will be tested to ensure it meets the selected targets

References

Blueair. (n.d.). Pro M. Retrieved from blueair: https://www.blueair.com/us/pro/pro-m/1408.html?cgid=pro

Environamental Protection Agency . (1990, July). Ventilation and Air Quality in Offices. Retrieved from https://www.epa.gov/sites/production/files/2014-08/documents/ventilation_factsheet.pdf

Environmental Protection Agency. (1989). Report to Congress on Indoor Air Quality.

Falke, R. (2016, March 24). Use the Air Changes Calculation to Determine Room CFM. Retrieved from Contracting Business : https://www.contractingbusiness.com/service/article/20868246/use-the-air-changes-calculation-to-determine-room-cfm

Honeywell . (n.d.). *Honeywell Filter A Universal Carbon Pre-Filter, HRF-AP1 (Replaces 38002)*. Retrieved from Honeywell Store: https://www.honeywellstore.com/store/products/honeywell-universal-carbon-pre-filter-hrf-ap1.htm

Honeywell. (2012, November). E3 Point Specifications. Retrieved from https://www.instrumart.com/assets/Honeywell-e3point-standalone2-datasheet.pdf

Honeywell. (2019, May). *HPM Series Particulate Matter Sensors.* Retrieved from https://sensing.honeywell.com/honeywell-sensing-particulate-hpm-series-datasheet-32322550.pdf

Honeywell. (n.d.). *Honeywell True HEPA Whole Room Air Purifier With Allergen Remover, HPA300*. Retrieved from Honeywell Store: https://www.honeywellstore.com/store/products/hpa300-true-hepa-whole-room-air-purifier-with-allergenremover.htm?gclid=Cj0KCQjwit_8BRCoARIsAIx3Rj4begs_A3wW7Kjc6ktbr_sgMQfBrl0BI7Z_4R-9y6KaVkuL60M_dTUaAmQUEALw_wcB

Blueair. (n.d.). Pro M. Retrieved from blueair: https://www.blueair.com/us/pro/pro-m/1408.html?cgid=pro

Environamental Protection Agency . (1990, July). Ventilation and Air Quality in Offices. Retrieved from https://www.epa.gov/sites/production/files/2014-08/documents/ventilation_factsheet.pdf

Environmental Protection Agency. (1989). Report to Congress on Indoor Air Quality.

Falke, R. (2016, March 24). Use the Air Changes Calculation to Determine Room CFM. Retrieved from Contracting Business : https://www.contractingbusiness.com/service/article/20868246/use-the-air-changes-calculation-to-determine-room-cfm

References

Honeywell . (n.d.). *Honeywell Filter A Universal Carbon Pre-Filter, HRF-AP1 (Replaces 38002)*. Retrieved from Honeywell Store: https://www.honeywellstore.com/store/products/honeywell-universal-carbon-pre-filter-hrf-ap1.htm

Honeywell. (2012, November). E3 Point Specifications. Retrieved from https://www.instrumart.com/assets/Honeywell-e3point-standalone2-datasheet.pdf

Honeywell. (2019, May). HPM Series Particulate Matter Sensors. Retrieved from https://sensing.honeywell.com/honeywell-sensing-particulate-hpm-series-datasheet-32322550.pdf

Honeywell. (n.d.). *Honeywell True HEPA Whole Room Air Purifier With Allergen Remover, HPA300*. Retrieved from Honeywell Store: https://www.honeywellstore.com/store/products/hpa300-true-hepa-whole-room-air-purifier-with-allergenremover.htm?gclid=Cj0KCQjwit_8BRCoARIsAIx3Rj4begs_A3wW7Kjc6ktbr_sgMQfBrI0BI7Z_4R-9y6KaVkuL60M_dTUaAmQUEALw_wcB

M. Jeremiah Matson, C. K.-S. (2020). Effect of Environmental Conditions on SARS-CoV-2 Stability in Human Nasal Mucus and Sputum. *Emerging Infectious Diseases*.

Moreno, T., & de Miguel, E. (2018). Improving air quality in subway systems: An overview. *Environmental Pollution*, 829-831.

Sylvane. (n.d.). *Frequently Asked Questions About Air Purifiers*. Retrieved from Sylvane: https://www.sylvane.com/air-purifier-faq.html#:~:text=High%20Efficiency%20Particulate%20Air%20(HEPA,and%20pollen%20from%20your%20air

Texas Instruments . (2016, May). PM2.5/PM10 Particle Sensor Analog Front-End for Air. Retrieved from https://www.ti.com/lit/ug/tidub65c/tidub65c.pdf

Texas Instruments. (2020, 10 30). PM2.5/PM10 Particle Sensor Analog Front-End for Air. Retrieved from https://www.ti.com/lit/ug/tidub65c/tidub65c.pdf

Uline. (n.d.). Uline 3-Shelf Utility Cart with Flat Shelves - 27 x 18 x 34", Black. Retrieved from Uline: https://www.uline.com/Product/Detail/H-5007BL/Utility-Carts/Uline-3-Shelf-Utility-Cart-with-Flat-Shelves-27-x-18-x-34-Black?pricode=WA9800&gadtype=pla&id=H-5007BL&gclid=Cj0KCQjwxNT8BRD9ARIsAJ8S5xZs2sqeNe-FNcf0eXoP6YRdOigzw7Grd-wCJII4rb0sTgOXVDB29_waApxfEA

World Health Organization . (n.d.). Common Noise. Retrieved from https://www.who.int/docstore/peh/noise/Comnoise-4.pdf

Questions

Emma Martin

Backup Slides

FAMU-FSU Engineering

		Major function	ons
Minor functions	Control System	Ventilate Room	Improve Air Composition
Sense Air Quality	x		
Measure Air Quality	x		
Activate Propeller	x		
Deactivate Propeller	x		
Modulate Propeller	x		
Activate Purifier	x		
Deactivate Purifier	x		
Modulate Purifier	x		
Propel Air		Х	
Circulate Air		х	Х
Purify Air			Х
Treat Air			Х
Filter Particulates			х
Dehumidify Air			Х
Humidify Air			Х
Sanitize Contaminants			X
Total	8	2	7

Questions	Customer Statement	Interpreted Need
Would using the most outside air be efficient enough to clean air?	The best method to clean the air, would be 100% outside air utilization. This would be too expensive	Clean and recycle existing indoor air.
How do healthy buildings affect energy consumption?	Using systems to work more efficiently, increases consumption. Portable and battery powered units with data loggers.	A device that is portable and battery powered would be more appropriate.
Are there any structural or sizing limitations? e.g. volume, height, length, weight, etc.	The device cannot be added to the existing structure of mechanical equipment. Small, and lightweight to be moved on a cart.	A portable device that can be moved easily.
In what environment will the project be used? e.g. home, office, stadium, retail, etc.	The idea is to create a product that can be used at FAMU- FSU COE	The product is designed to work in classrooms, labs, and study spaces.
Should it be geared towards reducing contamination or increasing ventilation?	The device should be geared towards reducing contaminants.	The product reduces contamination and increases ventilation.

Do you have any existing products or previous research that could be used to help this project?	Similar projects are being done at other universities.	The product will resemble other products that have been installed in other universities.
Will our project be used in conjunction with an existing product or will an entirely new system need to be designed?	Since we have products already made, I do not figure that you all will create an entirely new system.	The product will work in conjunction with an existing product.
If it will be used in conjunction with another system, what type of system? Do you have any specific details?	We will donate products for you to work with.	The project will make use of existing Honeywell products.
Does the current COE mechanical system include sensors?	Some rooms have humidity sensors, but there are no Volatile Organic Compounds (VOC) or particulate sensors.	Device will measure the VOC, CO2, humidity, temperature, and particulate levels
Is there a problem with the current purifiers?	Current purifiers would only clean 10% of the air in the room, because of placement.	The device will clean and monitor more of the air in the spaces.
What is the nature of the contamination we are aiming to reduce? e.g. viruses, bacteria, fungi, odor, etc.	Reducing the replication of airborne pathogens	The product reduces viruses that are in the hotspot area.
Does the project need to be an automatic or a manual system?	It would be great for it to be automatic but if it ends up having to be manual that will work.	The product is activated automatically.

	Monitor Air Quality	Portable	No Noise	No Heat	Reduces Contamination	Internal Power Source	Compatiable with Honeywell Products	Doesn't Interfere with Existing Infrastructure	Total
Monitor Air Quality	-	1	1	1	1	1	1	1	7
Portable		-	1	1					2
No Noise			-	1		1			2
No Heat				-					0
Reduces Contamination		1	1	1	-	1	1	1	6
Internal Power Source		1		1		-			2
Compatiable with Honeywell Products		1	1	1		1	-		4
Doesn't Interfere with Existing Infrastructure		1	1	1		1	1	-	5

				En	gineering	Characte	eristics		
Impro	vement	\uparrow		\uparrow	\leftarrow	\downarrow	\checkmark	\downarrow	\checkmark
	Units	µg/m3		ft3/min	dBA	Watts	ft3	sec	μm
Customer Requirements	Importance Weight Factor	Concentration Range of Sensors	Accuracy of Sensors	Volumetric Flowrate	Noise Level	Daily Energy Consumption	Volume of Device	Reaction Time of Hardware Components	Minimum Diameter of Particles the Device Will Filter
Monitor Air Quality	7	9	9					3	
Portable	2					1	9		
No Noise	2			1	9				
No Heat	0								
Reduces Contamination	6	3	9	9				3	9
Internal Power Source	2					3	1		
Compatiable with Honeywell Products	4	1	1						
Doesn't Interfere with Existing Infrastructure	5						1		
Raw Sco	re (406)	85	121	56	18	8	25	39	54
Relative W	/eight %	20.94	29.80	13.79	4.43	1.97	6.16	9.61	13.30
Rar	nk Order	2	1	3	7	8	6	5	4

				Pugh Ch	art				
Engineering Characterisitcs	Datum: Air Purifier	Concept 13: Single mobile cart	Concept 14: double mobile cart	Concept 34: Air purifier on cart	Concept 36: Stationary air purifier	Concept 38: Air purifier with UV cleaning	Concept 46: rotating air furifier	Concept 47: Light-up air purifier	Concept 48: Wall mounted sensors
ability to circulate air		+	S	+	+	S	S	-	+
ability to purify air		+	+	S	+	+	+	+	S
ability to filter particulates		+	+	+	+	S	S	+	S
ability to humidify and dehumidify air	D a	+	+	+	+	-	-	-	+
utilizes control systems	t u	+	+	+	-	-	-	S	+
portable	m	S	+	+	-	-	-	+	-
utilizes proprietary power source	-	S	S	S	-	-	-	S	+
utilizes multiple sensors		S	S	-	-	-	-	+	S
Plusse	S	5	5	5	4	1	1	4	4
Minuse	es	0	0	1	4	5	5	2	1
Satisfact	ory	3	3	2	0	2	2	2	3

	Pugh Chart											
Engineering Characterisitcs	Concept 34: Air purifier on cart	Concept 13: Single mobile cart	Concept 14: double mobile cart	Concept 48: wall mounted sensors								
Ability to circulate air		+	S	S								
ability to purify air		+	+	+								
ability to filter particulates	_	+	+	+								
ability to humidify and dehumidify air	Da	+	+	+								
utilizes control systems	t u	S	S	+								
utilizes mobility	m	S	+	-								
utilizes proprietary power source		S	S	-								
utilizes multiple sensors		S	S	S								
Plusses		4	4	4								
Minuses	0	0	2									
Satisfactory		4	4	2								

				Developm	nent of Cano	lidate Set of	Criteria Wei	ghts {W}					
	Criteria Comparison Matrix [C]												
Engineering Characteristics	Portability	Sense air Quality	Propeller Activation	Propeller Modulation	Purifier Activation	Purifier Modulation	Air Propulsion	Air Purification	Air Treatment	Filter Particulates	Humidify	Sanitize	
Portability	1.00	3.00	0.14	0.14	0.14	0.14	0.20	0.20	0.20	0.20	0.20	3.00	
Sense air Quality	0.33	1.00	0.14	0.20	0.20	0.20	0.20	0.14	0.14	0.14	0.33	5.00	
Propeller Activation	7.00	5.00	1.00	7.00	1.00	3.00	0.33	0.14	0.14	0.14	0.20	0.14	
Propeller Modulation	7.00	5.00	0.14	1.00	0.14	1.00	0.33	0.14	0.14	0.14	0.20	0.14	
Purifier Activation	7.00	5.00	1.00	7.00	1.00	5.00	0.33	0.14	0.20	0.20	0.20	0.14	
Purifier Modulation	7.00	5.00	0.33	1.00	0.20	1.00	0.33	0.20	0.20	0.20	0.20	0.20	
Air Propulsion	5.00	5.00	3.00	3.00	3.00	3.00	1.00	0.33	0.33	0.20	0.20	0.33	
Air Purification	5.00	7.00	7.00	7.00	7.00	5.00	3.00	1.00	1.00	0.33	0.20	0.33	
Air Treatment	5.00	7.00	7.00	7.00	5.00	5.00	3.00	1.00	1.00	0.33	3.00	3.00	
Filter Particulates	5.00	7.00	7.00	7.00	5.00	5.00	5.00	3.00	3.00	1.00	5.00	5.00	
Humidify	5.00	3.00	5.00	5.00	5.00	5.00	5.00	5.00	0.33	0.20	1.00	1.00	
Sanitize	0.33	0.20	7.00	7.00	7.00	5.00	3.00	3.00	0.33	0.20	1.00	1.00	
Sum	54.67	53.20	38.76	52.34	34.69	38.34	21.73	14.30	7.03	3.30	11.73	19.30	

	Development of Candidate Set of Criteria Weights {W}												
	I	1	I	N	ormalized C	riteria Comp	arison Matri	x [NormC]	I	I	T		
Engineering Characteristics	Portability	Sense air Quality	Propeller Activation	Propeller Modulation	Purifier Activation	Purifier Modulation	Air Propulsion	Air Purification	Air Treatment	Filter Particulates	Humidify	Sanitize	Criteria Weight {W}
Portability	0.0183	0.0564	0.0037	0.0027	0.0041	0.0037	0.0092	0.0140	0.0284	0.0606	0.0171	0.1554	0.0311
Sense air Quality	0.0061	0.0188	0.0037	0.0038	0.0058	0.0052	0.0092	0.0100	0.0203	0.0433	0.0284	0.2591	0.0345
Propeller Activation	0.1280	0.0940	0.0258	0.1337	0.0288	0.0782	0.0153	0.0100	0.0203	0.0433	0.0171	0.0074	0.0502
Propeller Modulation	0.1280	0.0940	0.0037	0.0191	0.0041	0.0261	0.0153	0.0100	0.0203	0.0433	0.0171	0.0074	0.0324
Purifier Activation	0.1280	0.0940	0.0258	0.1337	0.0288	0.1304	0.0153	0.0100	0.0284	0.0606	0.0171	0.0074	0.0566
Purifier Modulation	0.1280	0.0940	0.0086	0.0191	0.0058	0.0261	0.0153	0.0140	0.0284	0.0606	0.0171	0.0104	0.0356
Air Propulsion	0.0915	0.0940	0.0774	0.0573	0.0865	0.0782	0.0460	0.0233	0.0474	0.0606	0.0171	0.0173	0.0580
Air Purification	0.0915	0.1316	0.1806	0.1337	0.2018	0.1304	0.1381	0.0699	0.1422	0.1010	0.0171	0.0173	0.1129
Air Treatment	0.0915	0.1316	0.1806	0.1337	0.1441	0.1304	0.1381	0.0699	0.1422	0.1010	0.2558	0.1554	0.1395
Filter Particulates	0.0915	0.1316	0.1806	0.1337	0.1441	0.1304	0.2301	0.2098	0.4267	0.3030	0.4263	0.2591	0.2222
Humidify	0.0915	0.0564	0.1290	0.0955	0.1441	0.1304	0.2301	0.3497	0.0474	0.0606	0.0853	0.0518	0.1226
Sanitize	0.0061	0.0038	0.1806	0.1337	0.2018	0.1304	0.1381	0.2098	0.0474	0.0606	0.0853	0.0518	0.1041
Sum	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

	Development of Weighted Sum Vectors {Ws}												
Engineering Characteristics	Portability	Sense air Quality	Propeller Activation	Propeller Modulation	Purifier Activation	Purifier Modulation	Air Propulsion	Air Purification	Air Treatment	Filter Particulates	Air Humidific ation	Sanitize Contamin ants	Weighte d Sum {Ws}
Portability	0.0311	0.1034	0.0072	0.0046	0.0081	0.0051	0.0116	0.0226	0.0279	0.0444	0.0245	0.0312	0.3218
Sense air													
Quality	0.0104	0.0345	0.0072	0.0065	0.0113	0.0071	0.0116	0.0161	0.0199	0.0317	0.0409	0.0521	0.2493
Propeller													
Activation	0.2177	0.1724	0.0502	0.2266	0.0566	0.1068	0.0194	0.0161	0.0199	0.0317	0.0245	0.0015	0.9435
Propeller													
Modulation	0.2177	0.1724	0.0072	0.0324	0.0081	0.0356	0.0194	0.0161	0.0199	0.0317	0.0245	0.0015	0.5865
Purifier													
Activation	0.2177	0.1724	0.0502	0.2266	0.0566	0.1781	0.0194	0.0161	0.0279	0.0444	0.0245	0.0015	1.0354
Purifier													
Modulation	0.2177	0.1724	0.0167	0.0324	0.0113	0.0356	0.0194	0.0226	0.0279	0.0444	0.0245	0.0021	0.6270
Air Propulsion	0.1555	0.1724	0.1506	0.0971	0.1699	0.1068	0.0581	0.0376	0.0465	0.0444	0.0245	0.0035	1.0670
Air Purification	0.1555	0.2413	0.3514	0.2266	0.3965	0.1781	0.1742	0.1129	0.1395	0.0741	0.0245	0.0035	2.0780
Air Treatment	0.1555	0.2413	0.3514	0.2266	0.2832	0.1781	0.1742	0.1129	0.1395	0.0741	0.3680	0.0312	2.3359
Filter													
Particulates	0.1555	0.2413	0.3514	0.2266	0.2832	0.1781	0.2903	0.3388	0.4186	0.2222	0.6133	0.0521	3.3712
Air													
Humidification	0.1555	0.1034	0.2510	0.1619	0.2832	0.1781	0.2903	0.5647	0.0465	0.0444	0.1227	0.0104	2.2119
Sanitize													
Contaminants	0.0104	0.0069	0.3514	0.2266	0.3965	0.1781	0.1742	0.3388	0.0465	0.0444	0.1227	0.0104	1.9067
Sum	1.70	1.83	1.95	1.69	1.96	1.37	1.26	1.62	0.98	0.73	1.44	0.20	16.73

