

VDR 1 Team 518: Light-Weight UAV

October 20, 2020

Team Introductions

Ethan Hale Manufacturing and Systems Engineer

Jackson Dixon Supply Chain Engineer

Maxwell Sirianni Flight Dynamics Engineer

John Storms *Test Engineer*

Joseph Ledo-Massey Design Engineer and Project Manager

Sponsor and Advisor

NORTHROP GRUMMAN

Jennifer Tecson

Manager of Engineering

FSU Electrical Engineering Graduate

Lance Cooley, Ph.D.

Professor of Mechanical Engineering

Research interests in superconducting materials

Max Sirianni

Objective

The objective of this project is to develop a lightweight UAV to directly increase the flight time while maintaining surveillance capabilities.

Max Sirianni

4

Project Background

Background

Project Scope

Customer Needs

Functional Decomposition

5

Max Sirianni

Background

UAV- Unmanned Aerial Vehicle Piloted by remote control or onboard computer

Background

Project Scope

Customer Needs

Functional Decomposition

6

Max Sirianni

Background

OUAV use often coincides with surveillance

Surveillance is used to gather information and data that is valuable to the user

Background

Project Scope

Customer Needs

Functional Decomposition

7

Max Sirianni

Adaptation of the project Team 518 performed during 2019-2020 school year

Primary focus was on light-weighting the battery, the tail, and wing components with lighter materials

Based design on Believer 1960mm

Senior Design Team 2020-2021

Max Sirianni

Background

Project Scope

Customer Needs

Functional Decomposition

Project Scope

Background

Project Scope

Customer Needs

Functional Decomposition

9

Max Sirianni

Assumptions

...will be operated in The UAV... rural areas with ...is ...will be ...is a rural climates. remotely easily category 1 controlled. operated drone, as defined by and userthe DoD. friendly. ...will be flown in clear ...will follow all state airspace. and federal laws. Max Sirianni Background **Project Scope** Customer Needs **Functional Decomposition**

Background

Project Scope

Customer Needs

Functional Decomposition

13

Ethan Hale

The drone will be designed and constructed with selected lightweight materials

The UAV will be of the fixed wing style

The drone implements previously purchased components to be cost effective

Use available materials and stay within budget and design capabilities

The UAV will have a payload

The drone will take off and land either unassisted or assisted

Ethan Hale

Background

Project Scope

Customer Needs

Functional Decomposition

The drone will be designed and constructed with selected lightweight materials

The UAV will be of the fixed wing style

The drone implements previously purchased components to be cost effective

Use available materials and stay within budget and design capabilities

The UAV will have a payload

The drone will take off and land either unassisted or assisted

Ethan Hale

Background

Project Scope

Customer Needs

Functional Decomposition

The drone will be designed and constructed with selected lightweight materials

The UAV will be of the fixed wing style

The drone implements previously purchased components to be cost effective

Use available materials and stay within budget and design capabilities

The UAV will have a payload

The drone will take off and land either unassisted or assisted

Background

Project Scope

Customer Needs

Functional Decomposition

16

Ethan Hale

The drone will be designed and constructed with selected lightweight materials

The UAV will be of the fixed wing style

The drone implements previously purchased components to be cost effective

Use available materials and stay within budget and design capabilities

The UAV will have a payload

The drone will take off and land either unassisted or assisted

Background

Project Scope

Customer Needs

Functional Decomposition

17

Ethan Hale

The drone will be designed and constructed with selected lightweight materials

The UAV will be of the fixed wing style

The drone implements previously purchased components to be cost effective

Use available materials and stay within budget and design capabilities

The UAV will have a payload

The drone will take off and land either unassisted or assisted

Ethan Hale

Background > Pr

Project Scope

Customer Needs

Functional Decomposition

The drone will be designed and constructed with selected lightweight materials The drone implements previously purchased components to be cost effective

The UAV will be of the fixed wing style

Use available materials and stay within budget and design capabilities

The UAV will have a payload

The drone will take off and land either unassisted or assisted

Ethan Hale

Background

Project Scope

Customer Needs

Functional Decomposition

The drone will be designed and constructed with selected lightweight materials

The UAV will be of the fixed wing style

The drone implements previously purchased components to be cost effective

Use available materials and stay within budget and design capabilities

The UAV will have a payload

The drone will take off and land either unassisted or assisted

Ethan Hale

Background

Project Scope

Customer Needs

Functional Decomposition

Customer Needs: Take Away

Requirements coincide with the project objective

Cost is a major factor for this project

There are a lot of design requirements that are up to the team to decide on **Ethan Hale**

Background

Project Scope

Customer Needs

Functional Decomposition

22

Ethan Hale

	Communication	Flight	Power	Surveillance	Structure
Communication	Х	Х	Х	Х	Х
Flight	Х	Х	Х		х
Power	х	Х	Х	Х	Х
Surveillance	х		Х	Х	х
Structure	Х	Х	Х	Х	х

Priorities: Structure Power Flight Communication Surveillance

Ethan Hale

Background

Project Scope

Customer Needs

Functional Decomposition

29

Future Work

Ethan Hale

Conclusions

Purpose: Develop a lightweight UAV to directly increase the flight time

> Motivation: Aerial surveillance

Market: Farmers, Military, Hobbyists, Infrastructure, Education

Ethan Hale

References

Classification of the Unmanned Aerial Systems. (n.d.). Retrieved September 25, 2020, from https://www.e-education.psu.edu/geog892/node/5

Ethan Hale

Questions?

Backup Slides

Questions	Customer Statements	Interpreted Need	
What materials should be used?	The team last year	Use available	
	found an innovative composite to use	materials and stay within	
	as a lightweight material.	budget and	
		design capabilities.	
Is there a pre-existing drone to work	Utilize the previous SD project	The drone will be designed	
from or will the drone design be	to interpret a direction for this year's	and constructed with	
original?	project.	selected lightweight materials.	
How much of the work should be	With the budget issues we have, figure	The drone implements	
continued from last year?	out what can be used from last year's	previously purchased components to	
	work.	be cost effective.	
Are there take-off and landing	There is no take-off or landing	The drone will take off and land either	
requirements?	requirements.	unassisted or assisted.	
Quadcopter or fixed wing drone?	Look at the work of last year. A quad	The UAV will be of the fixed wing	
	rotor is harder to control.	style.	
What kind of payload is expected to be	Payload can be for surveillance or data	The UAV will have a payload.	
a part of the UAV?	collection purposes.		
Can the components	Decide a payload size/range.	The drone will use	
be outsourced, or will the components	Unnecessary to create sensors.	outsourced components.	
need to be self-created?			
What is the size requirement for the	Look at existing design from last year.	The drone is smaller than double the	
UAV?		reference drone.	
What is the weight restriction of the	Look at the work of last year but light-	The drone will be a category 1 UAV.	
UAV?	weighting can come in forms of		
	efficiency.		

	Communication	Flight	Power	Surveillance	Structure
Receive Commands	х	х	Х	Х	
Flight Feedback	х	х	х		
Send Video Feed	Х			Х	
Accelerate	Х	Х	Х		Х
Decelerate	Х	Х	Х		Х
Adjust Roll, Pitch, & Yaw	х	х	х		x
Power Flight Controls	Х	х	Х		х
Power Payload	Х		Х	Х	х
Record Visual Data	х		Х	Х	
Orient Payload	X		Х	X	Х
Bolster Weight		Х			х
Generate Lift		Х			х
Store Hardware					х
Couple Payload		X		X	X

