

DR 5 Team 518: Light-Weight UAV

February 18, 2021

Department of Mechanical Engineering

Team Introductions

Ethan Hale Manufacturing and Systems Engineer

Jackson Dixon Supply Chain Engineer

Maxwell Sirianni Flight Dynamics Engineer

John Storms Test Engineer

Joseph Ledo-Massey Design Engineer and Project Manager

Sponsor and Advisor

NORTHROP GRUMMAN

Jennifer Tecson

Manager of Engineering

FSU Electrical Engineering Graduate

Lance Cooley, Ph.D.

Professor of Mechanical Engineering

Research interests in superconducting materials

Jackson Dixon

3

Objective

The objective of this project is to use multiple light-weighting techniques to reduce the overall weight of a UAV and increase the flight time.

Jackson Dixon

4

Department of Mechanical Engineering

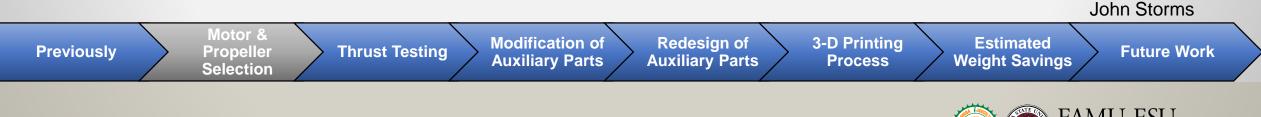
Department of Mechanical Engineering

5

Previously

- Took inventory of UAV parts purchased by previous team
- Got the electrical system working → Motors now controlled by remote
- Weight comparison between the 2 batteries
 - New battery saves 27g and provides an additional 2000mAh
- Parts were remodeled in CREO to be printed with LW-PLA

Jackson Dixon


ngineering

Motor Selection

- Recommended motor is the *SunnySky X2814 900KV* motor
 - Can produce over 2000 gram-force of thrust depending on propeller applied
 - Light-weight aluminum construction
 - Weight: 110g
 - Large drone applications
 - Max of 13,320 $\frac{rev}{min}$ (intended for bigger propellers, up to 13 inches long)

Engineering

Motor Selection

iFlight XING X2814 880KV

- Designed for large drone applications
- Suited for 2-6s battery configurations
- Comparable thrust compared to old motor
 - 1924gf (12x5) vs. 1950gf (11x5.5)
- Weight: 91g per motor
 - Total savings of 38g

Previously	Motor & Propeller Selection	Thrust Testing	Modification of Auxiliary Parts	\sim	3-D Printing Process	Estimated Weight Savings	Future Work	
------------	-----------------------------------	----------------	------------------------------------	--------	-------------------------	-----------------------------	-------------	--

7

- Recommend propellers for *SunnySky X2814 900KV* motor:
 - APC* 11x5.5, 11x7, 11x8 inch propellers
 - Thrust output, current draw and power consumption varies for each
 - Weight varies per propeller

	APC 11x5.5	APC 11x7	APC 11x8
Weight (g)	22.96	39.97	41.11

*APC Propellers are an industry leading brand of injection molded propellers

Previously	Motor & Propeller Selection	Thrust Testing	Modification of Auxiliary Parts	Redesign of Auxiliary Parts	3-D Printing Process	Estimated Weight Savings	Future Work	
------------	-----------------------------------	----------------	------------------------------------	--------------------------------	-------------------------	-----------------------------	-------------	--

Department of Mechanical Engineering

John Storms

- 11x5.5-inch propellers selected:
 - Lightest of the three choices
 - Consume less current and power compared to 11x7 and 11x8 inch props
 - More efficient than other propeller sizes (gf/W)
 - Remains 12°C cooler at full throttle
 - Produce just 3% less thrust (1950)

John Storms

Quanum Carbon Fiber Propeller

- Extremely light and strong construction
- Size: 11x5.5 inch
- Weight: 9g each
 - Total savings of 18g (50% weight reduction)

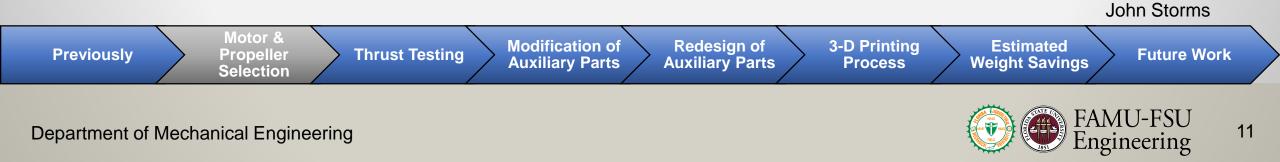
John Storms

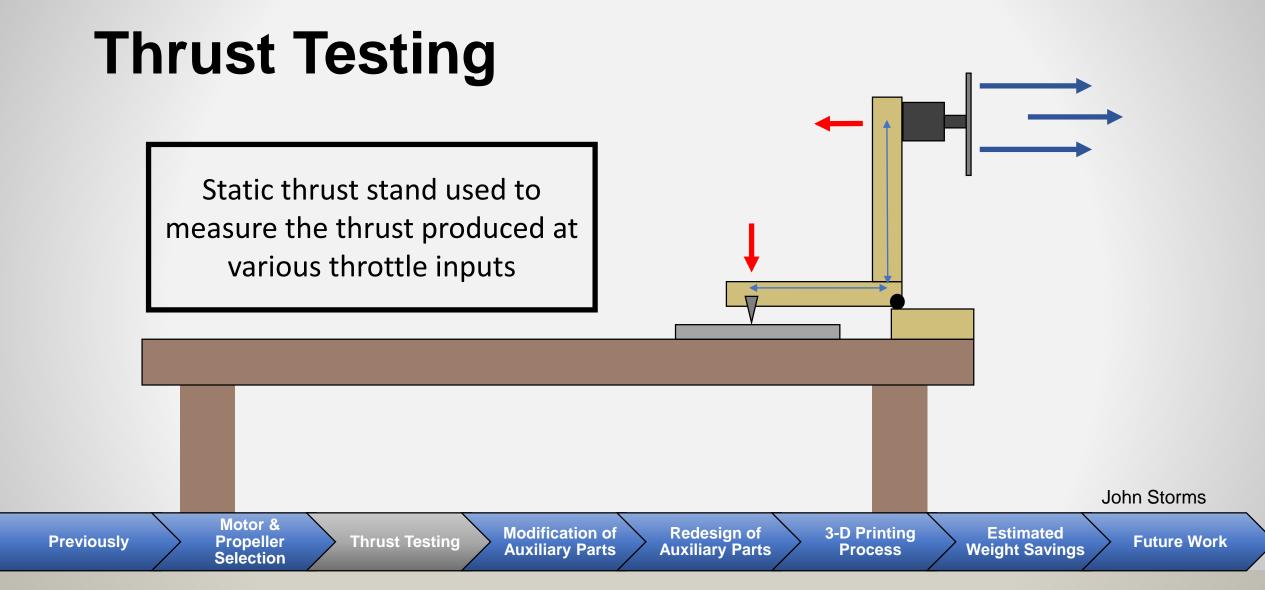
Previously

Motor & Propeller Thrust Testing Selection

Modification of Auxiliary Parts Redesign of Auxiliary Parts 3-D Printing Process

Estimated Weight Savings


Future Work



Quanum Carbon Fiber Propeller

 Consumes 61% less energy from the motor than APC 11x5.5 inch propellers

Department of Mechanical Engineering

Thrust Testing

- Preliminary thrust tests were done to analyze the SunnySky X2814 900KV motor
- APC 11x4.5-inch propellers were used for these tests as they were available in the Senior Design Lab (weight: 17.01g)

		ті	hrust generated (N)		
		25% throttle	50% throttle	75% throttle	100% throttle	
	Thrust Test 1	1.756	4.199	11.654	23.230	
	Thrust Test 2	1.854	4.307	12.164	23.328	
	Thrust Test 3	1.815	4.375	12.243	23.240	
	Thrust Test 4	1.776	4.081	12.056	23.230	
	Avg. Thrust	1.800	4.241	12.028	23.257	John Storms
Previously	Motor & Propeller Selection			esign of 3-D Pr iary Parts Proc	inting Estimat cess Weight Sa	

Thrust Testing

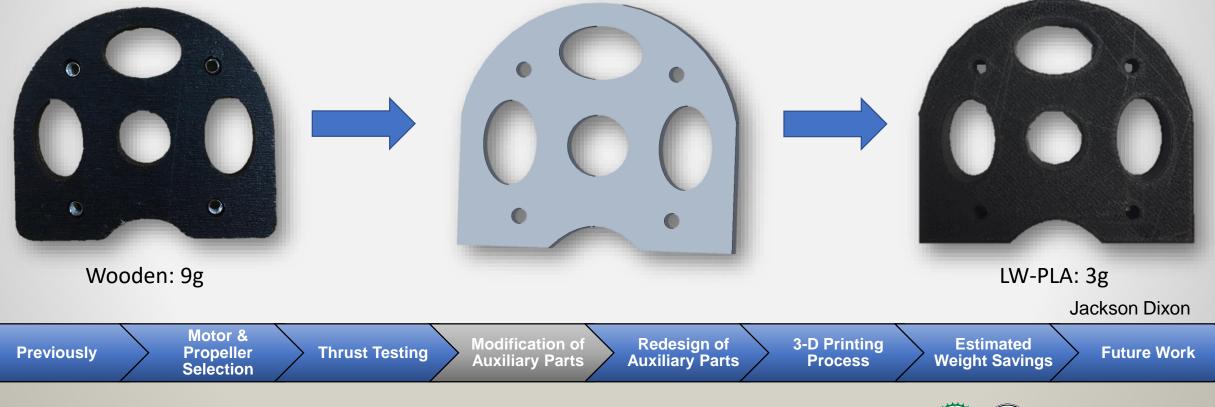
- Preliminary thrust tests were done to analyze the *iFlight XING 2184 880KV*
- APC 11x4.5-inch propellers were used for these tests as well

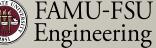
		Ti	hrust generated (I	N)		
		25% throttle	50% throttle	75% throttle	100% throttle	
	Thrust Test 1	2.136	4.655	10.760	19.865	
	Thrust Test 2	2.175	4.400	10.849	19.747	
	Thrust Test 3	2.136	4.371	10.349	19.607	
	Thrust Test 4	2.146	4.400	10.506	19.718	
	Avg. Thrust	2.148	4.457	10.616	19.735	John Storms
Previously	Motor & Propeller Selection			esign of 3-D Pr iary Parts Proc	inting Estimat cess Weight Sa	ed Euture Work

Thrust Testing

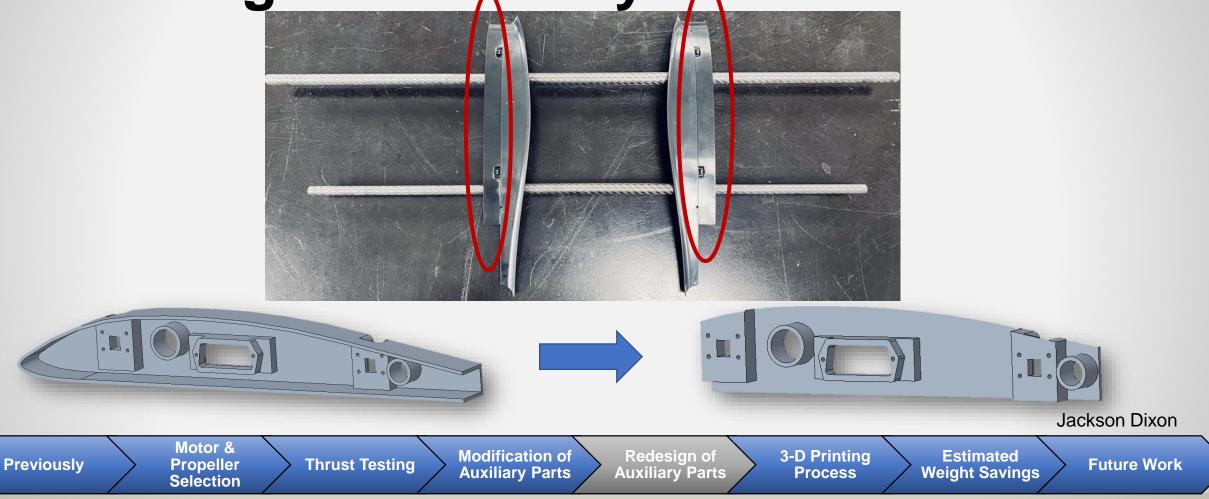
- The thrust testing using the 11x4.5-inch propeller provided more force than expected
 - With a less aggressive pitch, less thrust should be generated than the APC 11x5.5 propeller

Modification of Auxiliary Parts


• Made drawings for all the parts that can be reprinted at a lower weight.



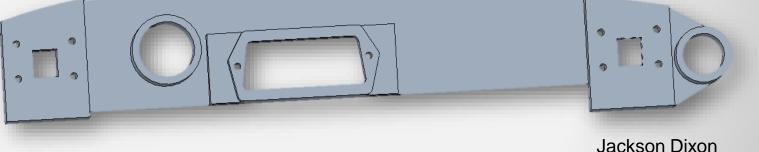
Changing Material of Auxiliary Parts


 Preparing drawings of existing parts that can be reprinted at a lighter weight

17

Redesign of Auxiliary Parts

Department of Mechanical Engineering


18

Redesign of Auxiliary Parts

- Utilizing stress concentration tables in lacksquareAppendix E of the Design of Machinery textbook.
- Research adhesives • for part assembly.

Previously

Motor & **Thrust Testing** Propeller Selection

Modification of Auxiliary Parts

Redesign of

Auxiliary Parts

3-D Printing Process

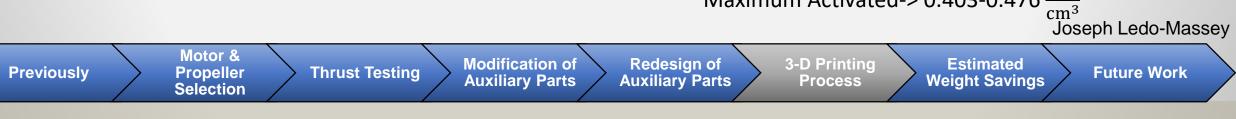
Estimated Weight Savings

Future Work

FAMU-FSU

Engineering

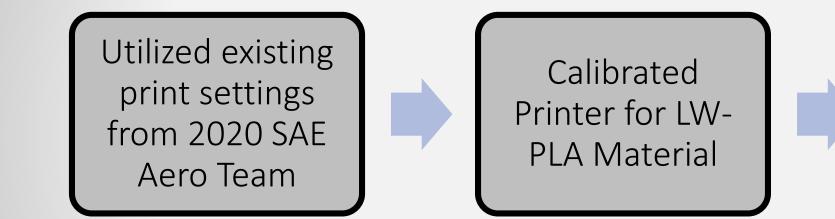
PLA vs. LW-PLA


PLA (Polylactic Acid)

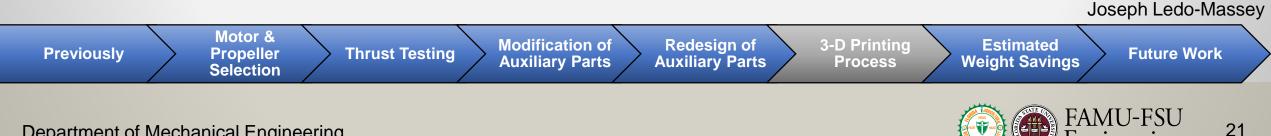
LW-PLA (Light-Weight Polylactic Acid)

New filament made by ColorFabb

Densities: Non-Activated-> 1.210-1.430 $\frac{g}{cm^3}$ Maximum Activated-> 0.403-0.476 $\frac{g}{cm^3}$


20

Density: 1.210-1.430 $\frac{g}{cm^3}$


Most common 3-D printing filament

3-D Printing Process

Adjusted **Calibrated Print** Settings for **Scaled Prints**

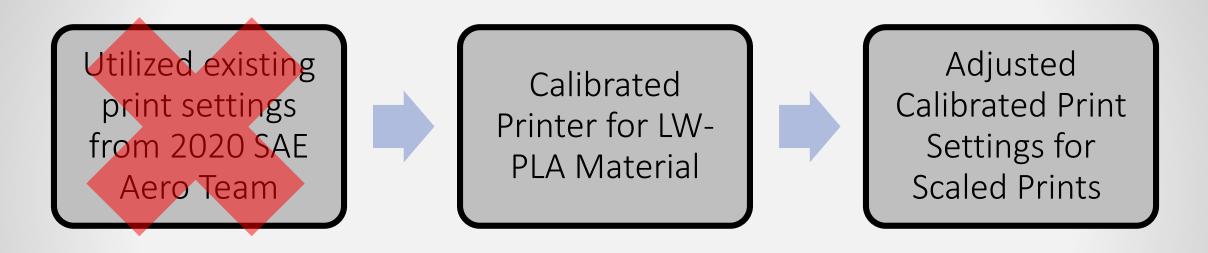
Engineering

Existing Print Settings for LW-PLA

Team 513: SAE Aero Design (2020)

Print Settings Printer: Lulzbot Taz 6 Nozzle Temperature: 230 C Flow Rate: 50%

Electric Regulating Cover


22

Engineering

Joseph Ledo-Massey Motor & Redesign of **Modification of 3-D Printing Estimated Thrust Testing Future Work Previously** Propeller Weight Savings **Auxiliary Parts Auxiliary Parts** Process Selection FAMU-FSU

Department of Mechanical Engineering

3-D Printing Process

Existing print settings did not translate to the Dremel printer being used for this project

Previously Motor & Thrust Testing Modification of Auxiliary Parts Redesign of Auxiliary Parts Selection Future Work

23

Joseph Ledo-Massey

Printer Calibration for LW-PLA

	Print Set	tings
	Layer thickness	0.2 mm
	Shell thickness	0.4 mm
	Infill %	10%
	Print speed	$25 \frac{\text{mm}}{\text{s}}$
	Part cooling	0%
۲	Nozzle Temperature	230 – 270 C
۲	Flow Rate	100 – 30 %

	Previously		Motor & Propeller Selection	Thrust Testing	Modification of Auxiliary Parts	Redesign of Auxiliary Parts	3-D Printing Process	Estimated Weight Savings	Future Work	
--	------------	--	-----------------------------------	----------------	------------------------------------	--------------------------------	-------------------------	-----------------------------	-------------	--

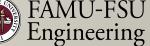
3

т

24

Joseph Ledo-Massey

Department of Mechanical Engineering


Printer Calibration for LW-PLA

					Print	Temp (C)	Flow Rate	Thickness (mm)	
Print Sett	tings	4		م م	1	230	100%	0.73	
				Nozzle trature	2	240	100%	0.78	
Layer thickness	0.2 mm	4		l No	3	250	100%	1.3	
Shell thickness	0.4 mm			Varied Nozzle Temperature	4	260	100%	1.27	
Infill %	10%			A Te	5	270	100%	1.18	
					6	250	90%	1.04	
Print speed	$25 \frac{\text{mm}}{\text{s}}$			te	7	250	80%	0.96	
Part cooling	0%			/ Rate	8	250	70%	0.88	
	222 270 0			Flow	9	250	60%	0.78	
Nozzle Temperature	230 – 270 C	4			10	250	50%	0.67	
Flow Rate	Flow Rate 100 – 30 %	Varied	11	250	40%	0.61			
				Š	12	250	30%	0.46	
								Joseph Ledo	o-M
Previously Previously	Notor & ropeller Thr election		Modification of Auxiliary Parts	Redes Auxiliar		3-D Printing Process	Estima Weight S		Vor
								FAMU-FSU	

Printer Calibration for LW-PLA

					Print	Temp (C)	Flow Rate	Thickness (mm)	
Print Set	ttings			e e	1	230	100%	0.73	
		1		ozz tur	2	240	100%	0.78	
Layer thickness	0.2 mm	4		A Ne	3	250	100%	1.3	
Shell thickness	0.4 mm			Varied Nozzle Temperature	4	260	100%	1.27	
Infill %	10%			Za Te	5	270	100%	1.18	
		1		4	6	250	90%	1.04	
Print speed	$25 \frac{\text{mm}}{\text{s}}$			te	7	250	80%	0.96	
Part cooling	0%			/ Rate	8	250	70%	0.88	
	222 272 0	1		Flow	9	250	60%	0.78	
Nozzle Temperature	e 230 – 270 C	4		d F	10	250	50%	0.67	
Flow Rate	100 – 30 %			Varied	11	250	40%	0.61	
				Š I	12	250	30%	0.46	
								Joseph Ledo	J-Mass
Previously > Pr	Motor & Propeller Thr Selection	hrust Testing	Modification of Auxiliary Parts	Redes Auxiliar		3-D Printing Process	Estima Weight S		Vork
								FAMU-FSU	

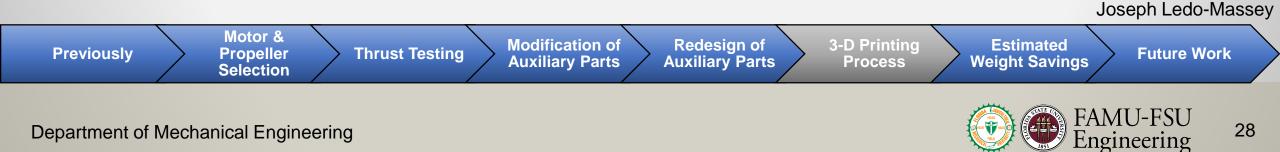
26

Calibrated Print Settings for LW-PLA

Nozzle Temperature: 250 C Flow Rate: 30% Layer Thickness: 0.2 mm Shell Thickness: 0.4 mm Infill: 10% Print Speed: 25 mm Part Cooling: 0%

Electric Regulating Cover

Joseph Ledo-Massey


Previously	Motor & Propeller Selection	Thrust Testing	Modification of Auxiliary Parts	Redesign of Auxiliary Parts	3-D Printing Process	Estimated Weight Savings	Future Work	
------------	-----------------------------------	----------------	------------------------------------	--------------------------------	-------------------------	-----------------------------	-------------	--

3-D Printing Process

Calibrated print settings resulted in failed prints when used for full scale parts

Final Print Settings

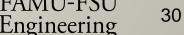
Nozzle Temperature: 240 C Flow Rate: 50% Layer Thickness: 0.2 mm Shell Thickness: 0.8 mm Infill: 0% Print Speed: $40 \frac{\text{mm}}{\text{s}}$ Part Cooling: 0%

Electric Regulating Cover

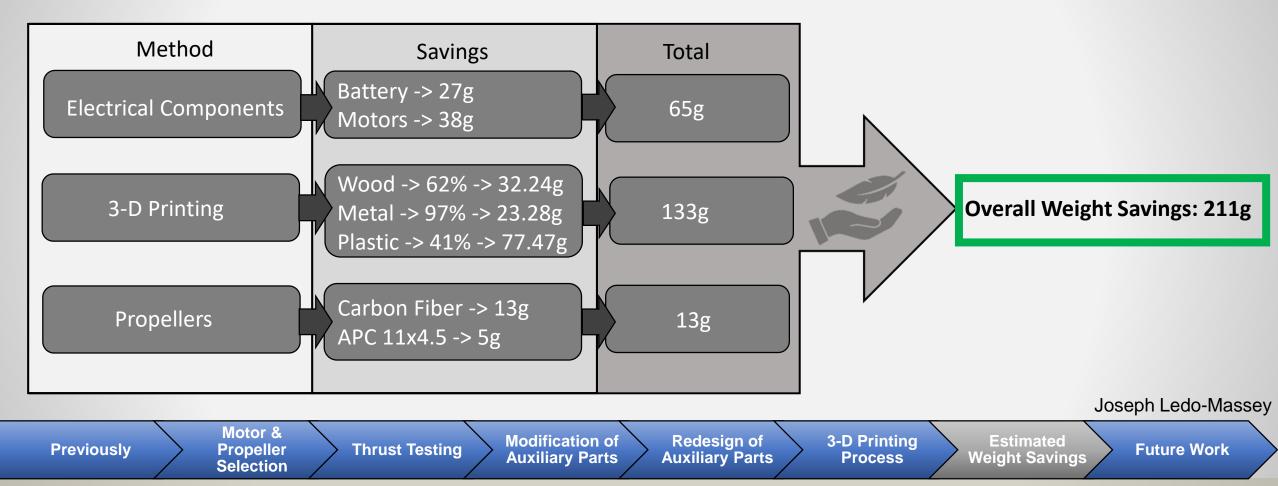
Motor & **Modification of Redesign of 3-D Printing Estimated** Thrust Testing **Future Work** Previously Propeller **Weight Savings Auxiliary Parts Auxiliary Parts** Process Selection

Engineering

Joseph Ledo-Massey


29

3-D Printing Process


Reduction in Nozzle temperature and an increase in flow rate yielded in successful prints with noticeable weight reduction compared to standard PLA filament

 Motor &
Propeller
Selection
 Thrust Testing
 Modification of
Auxiliary Parts
 Redesign of
Auxiliary Parts
 3-D Printing
Process
 Estimated
Weight Savings
 Future Work

Joseph Ledo-Massey

Estimated Weight Savings

31

Department of Mechanical Engineering

Future Work

Complete Redesign of Auxiliary Parts

Finish 3-D Printing

Develop Light-Weight Validation Tool Assembly & Testing UAV

Recap

Lighter Electrical Components

The objective of this project is to use multiple light-weighting techniques to reduce the overall weight of the Believer 1960 and increase the flight time.

LW-PLA Constructed Parts

John Storms

Department of Mechanical Engineering

Improve

Propeller

Design