Trane: Improve Air Quality VDR 2

Jake Hamilton, Nicholas Holm, Andreu Santeiro, Joseph Thyer, Gavin Young

Team Introductions

Jake Hamilton Design Engineer

Nicholas Holm Environmental Engineer

Andreu Santeiro *Quality Control Engineer*

Gavin Young Fluids Engineer

Gavin Young

2

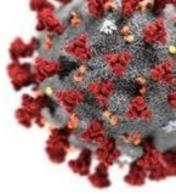
Sponsor & Advisor

Engineering Mentor Cameron Griffith Trane Liaison

<u>Academic Advisor</u> Juan Ordonez, Ph.D. Energy Conversion Systems Director & Professor

Gavin Young

Department of Mechanical Engineering



Develop a strategy to improve indoor air quality that combats COVID and has significant long term usefulness.

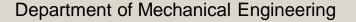
Gavin Young

4

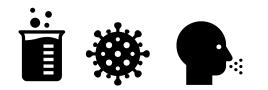
Background

Gavin Young

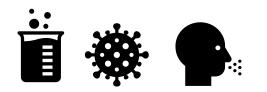
Department of Mechanical Engineering

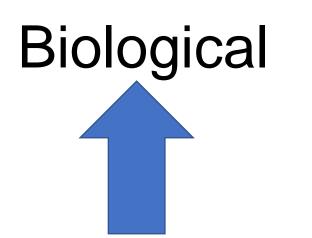


Improve Air Quality



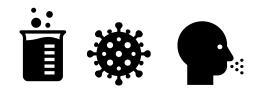
Gavin Young



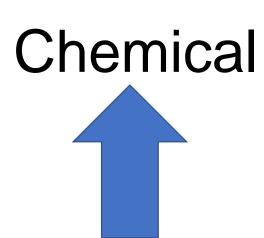

Biological Chemical Particle

Gavin Young

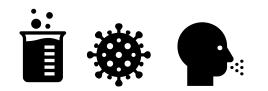
Chemical



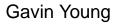
Gavin Young

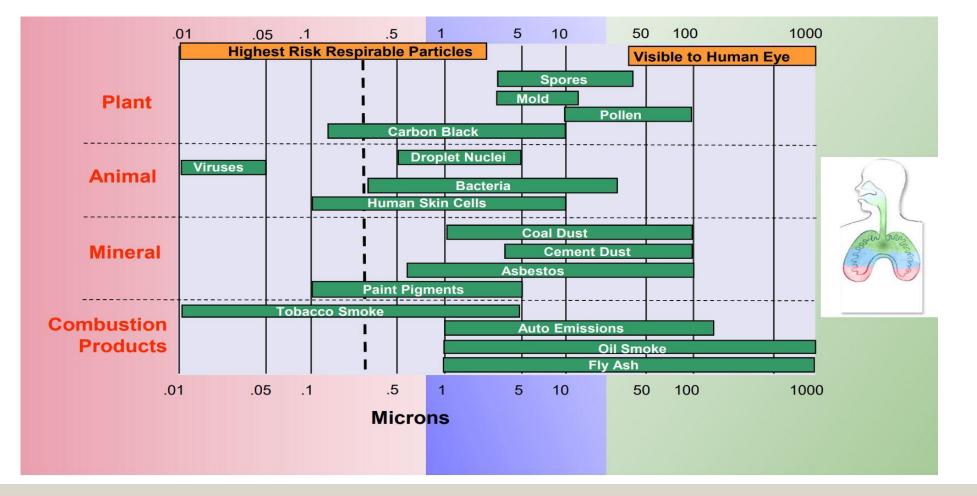

8

Biological

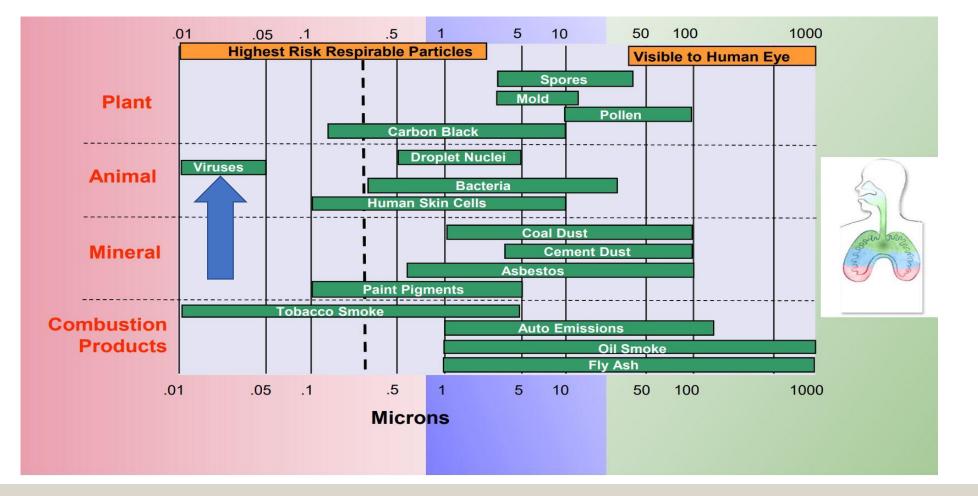


Gavin Young

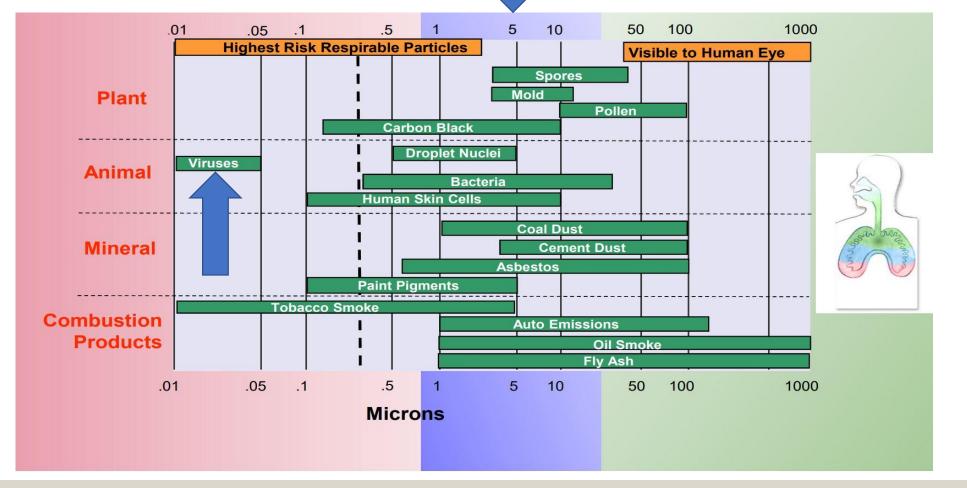

9



Biological Chemical Particle



Particulate Sizes


Particulate Sizes

Gavin Young

Particulate Sizes

Gavin Young

Customer Needs

- Improve air quality
- Minimize operating costs
- Remains useful into the future
- Promote Trane's ideals

Nicholas Holm

Critical Functions

- Improve Air Quality
 - Clean Indoor Air
 - Dilute Indoor Air
 - Exhaust Indoor Air
 - Contain Indoor Air
- Minimize increase in energy usage

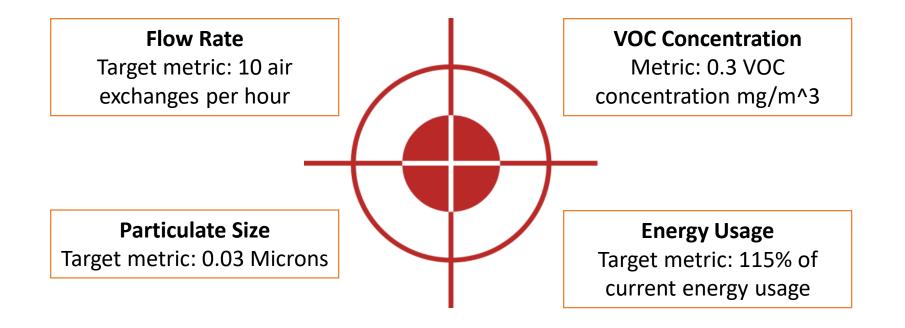
Air Quality Index - Particulate Matter

301-500	Hazardous
201-300	Very Unhealthy
151-200	Unhealthy
101–150	Unhealthy for Sensitive Groups
51-100	Moderate
0-50	Good

Nicholas Holm

Critical Functions

- Improve Air Quality
 - Clean Indoor Air
 - Dilute Indoor Air
 - Exhaust Indoor Air
 - Contain Indoor Air
- Minimize increase in energy usage


Air Quality Index - Particulate Matter

301-500	Hazardous
201–300	Very Unhealthy
151-200	Unhealthy
101–150	Unhealthy for Sensitive Groups
51-100	Moderate
	Good

Nicholas Holm

Targets and Metrics

Nicholas Holm

Concept Generation

Nicholas Holm

Department of Mechanical Engineering

Concept Selection

Joseph Thyer

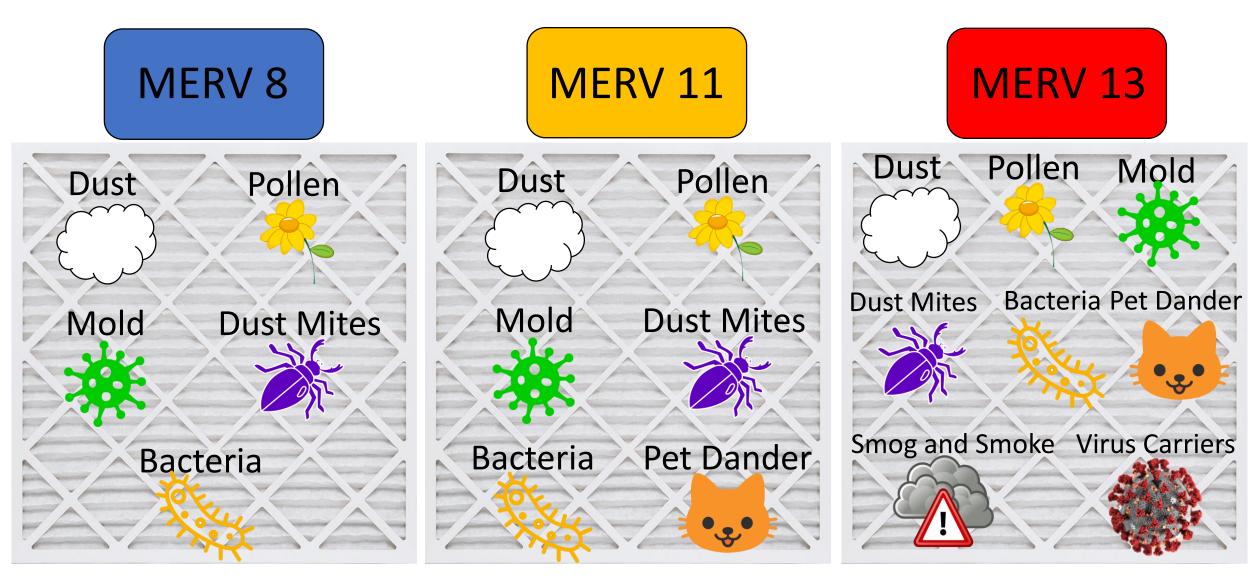
Department of Mechanical Engineering

Ionization

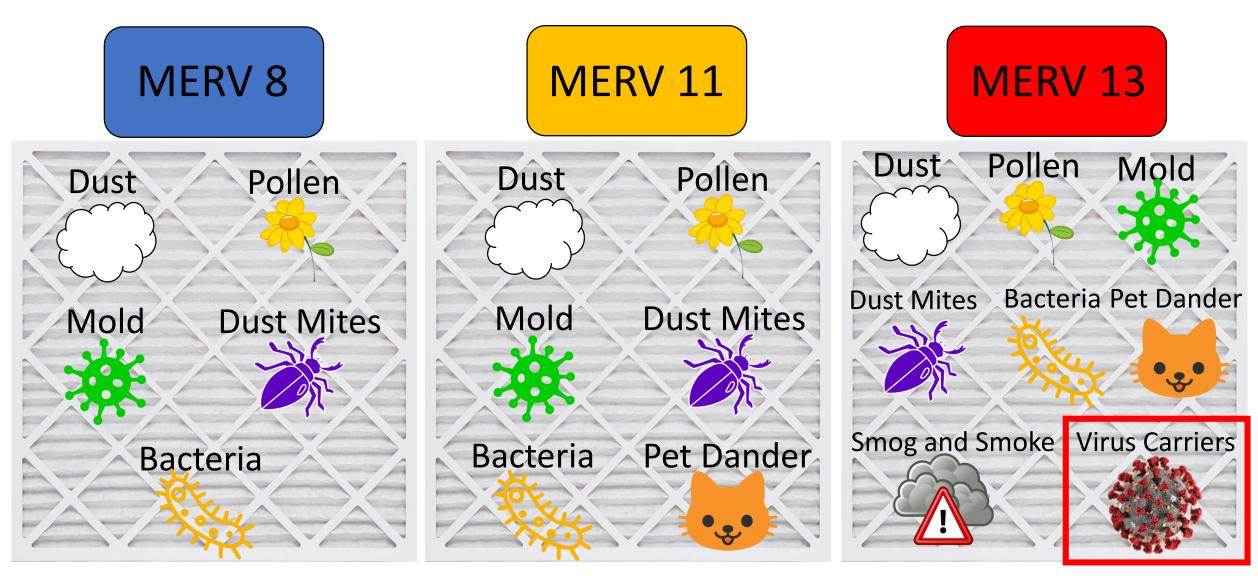
- Uses high voltage to charge particles
- Makes particulate easier to filter
- Proven on industrial scale

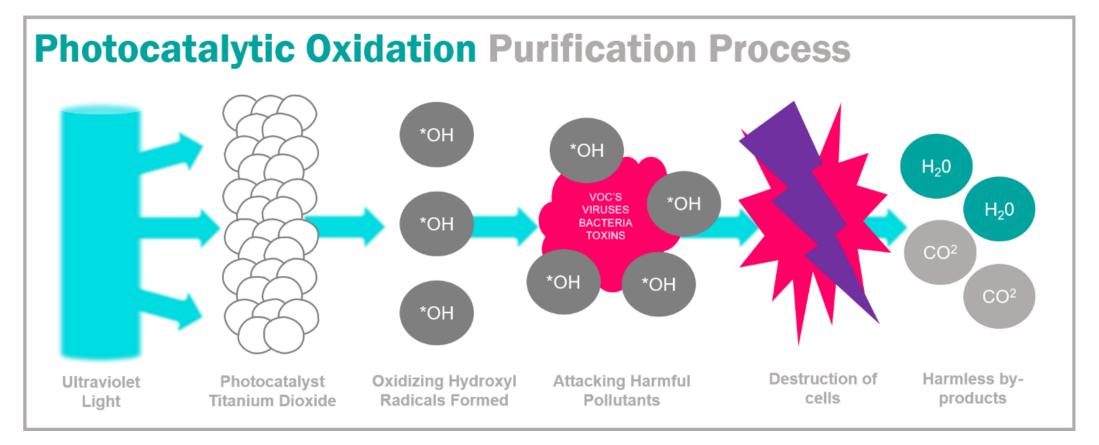
Ionization cont.

- Ionization can generate Ozone
- Needlepoint Bipolar Ionization (NPBI) does not
- Works on particles of all sizes



Higher Quality Filters


- Works for lots of systems, but not all
- Easy installation
- Replacement costs

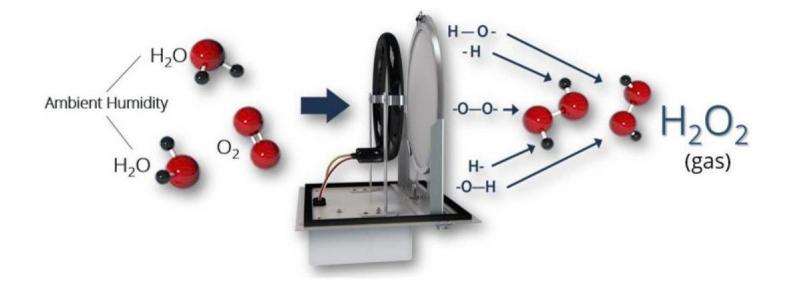

Photocatalytic Oxidation (PCO)

- Creates charged ions in the air that break down particles
- Photohydro Ionization (PHI) is similar to PCO but with a specific catalyst

Photocatalytic Oxidation (PCO) cont.

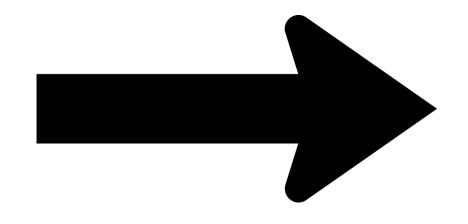
Dry Hydrogen Peroxide (DHP)

- Utilizes local humidity and oxygen to create hydrogen peroxide gas
- Dangerous in high concentrations
- The gas becomes ionized and attaches to particles



Dry Hydrogen Peroxide (DHP) cont.

- Can be fitted into the existing systems duct work
- Effective against:
 - Fungal spores
 - Bacteria
 - Viruses


Dry Hydrogen Peroxide (DHP) cont.

Joseph Thyer

Moving Forward

- Over the next few weeks
 - Meet with Marcela Castaño
 - Produce bill of materials
 - Develop Spring gameplan

- 1. We need to improve air quality in a way that affects COVID but is useful independent of COVID.
- 2. There are lots of possible promising solutions.

|--|--|

3. Particle Ionization is the selected concept.

Questions?

Air Quality. (2019, December 24). Retrieved October 15, 2020, from https://morpc.gohio.com/commute-resources/air-quality/

Corson, S., & Vargas, M. (2020, August 19). TRANE: Indoor Air Quality (IAQ)- Related HVAC Guidance from ASHRAE[®] and the CDC. Retrieved October 13, 2020.

Danziger, P. (2020, May 20). Lowe's Is Narrowing The Gap Between Its Chief Rival Home Depot. Expect Its Surge To Continue. Retrieved October 15, 2020, from <u>https://www.forbes.com/sites/pamdanziger/2020/05/20/lowes-narrows-the-gap-between-its-chief-rival-home-depot-and-why-its-surge-will-continue/</u>

Hampshire, K. (2020, April 29). First American Home Warranty vs. American Home Shield. Retrieved October 15, 2020, from https://www.usnews.com/360-reviews/home-warranty/first-american-vs-american-home-shield

Hanania, J. (2018, September). Energy Education: Electrostatic precipitator. Retrieved November 13, 2020, from https://energyeducation.ca/encyclopedia/Electrostatic_precipitator

Image Library. (2020, February 10). Retrieved October 15, 2020, from https://www.cdc.gov/media/subtopic/images.htm

Reference cont.

Lower, A. (2020, November). Will a higher MERV filter affect my airflow? Retrieved November 10, 2020, from <u>https://www.secondnature.com/blog/higher-merv-air-filter-affect-air-flow</u>

Marsden, J., & Fink, R. (2020, May). Hydro-Peroxide for Indoor Air Quality. Retrieved November 10, 2020, from <u>https://www.rgf.com/article/hydro-peroxide-for-iaq/</u> Seo2-512. (n.d.). Retrieved October 15, 2020, from http://www.parkcontrols.com/homepage/seo2-512/

Man in face mask. (n.d.). Retrieved October 14, 2020, from <u>https://www.vectorstock.com/royalty-free-vector/man-in-face-mask-line-icon-pictogram-disease-vector-31740115</u>

Additional Slides

Customer Needs Process

Customer Statement

- Indoor air quality is not sufficient enough to diminish the threat of harmful viruses
- Trane is driven to provide the lowest life cycle cost, efficient energy usage to reduce carbon emissions, and for sustainability in future markets

Interpreted Need

- The solution must improve air quality
- The solution must be **cost-effective** and be **sustainable**

Jake Hamilton

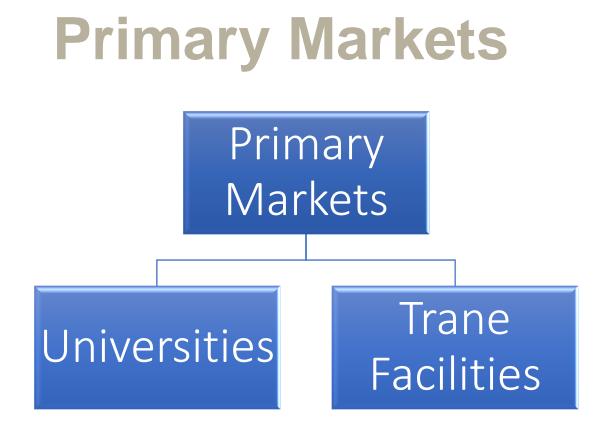
Pollutant Categories

Biological

- Bacteria
- Viruses
- Fungi
- Dust Mites
- Animal Dander
- Pollen

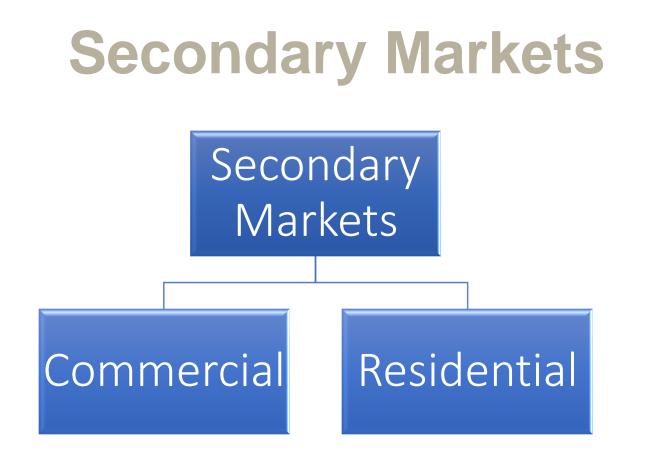
Chemical

- Accidental chemical spills
- Cleaning Supplies
- Paints & Adhesives
- Products of combustion (CO, H₂CO, NO₂)


Particle

Dust
Dirt

Andreu Santeiro



Jake Hamilton

Jake Hamilton

39

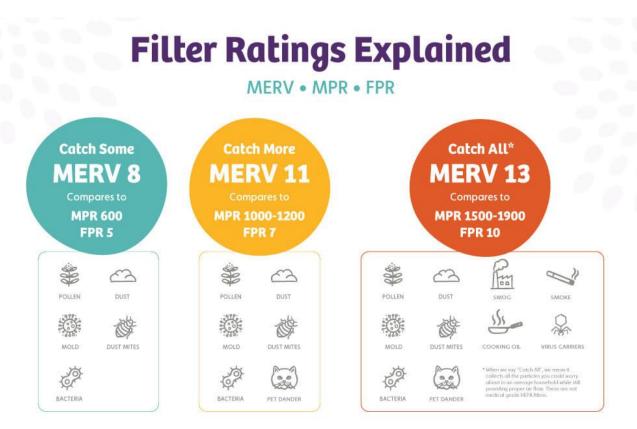
Project Scope

Andreu Santeiro

40

Assumptions

- Existing infrastructure
- Government & environmental guidelines
- Market specific guidelines/budget
- Testing done in Florida climate



Jake Hamilton

Higher Quality Filters

- Not universal solution
- Temporary
- Easiest installation*

How Photocatalytic Oxidation Purifies the Air

- Photocatalytic oxidation is achieved when you combine UV rays with a TiO2-coated filter. TiO2 refers to Titanium Oxide. This process creates hydroxyl radicals and super-oxide ions, which are highly reactive electrons.
- These highly reactive electrons aggressively combine with other elements in the air, such as bacteria and VOCs. VOC is an acronym for Volatile Organic Compounds, which include harmful pollutants such as formaldehyde, ammonia and many other common contaminates released by building materials and household cleaners generally found in the home.
- Once bound together, the chemical reaction takes place between the super-charged ion and the pollutant, effectively "oxidizing" (or burning) the pollutant. This breaks the pollutant down into harmless carbon dioxide and water molecules, making the air more purified.
- Photocatalytic Oxidation Studies
- Chemistry scientists from the University of Colorado and the National Renewable Energy Laboratory in Colorado conducted an
 experiment testing the effectiveness of photocatalytic oxidation against harmful VOCs (volatile organic compounds such as formaldehyde
 and other known carcinogens). They found that destruction of these contaminates was nearly 100%.
- Scientists working on behalf of the U.S. Department of Energy found that photocatalytic oxidation air purification may be beneficial for the large-scale treatment of air in occupied buildings, while conserving energy costs. This is due to the fact that this technology destroyed VOC chemicals at a significant rate, even at high air flow rates. Their study indicated that photocatalytic oxidation could provide as much VOC removal by itself as compared to the expensive process of introducing outdoor air into the indoor environment, drastically reducing the need to channel outdoor air inside.
- In another study commissioned by the U.S. Department of Energy, scientists found that photocatalytic oxidation converted more than 95% of harmful VOC chemicals to harmless carbon dioxide and water molecules.

PHI

- Photohydroionization® (PHI) is an advanced oxidation technology developed by RGF Environmental Group to minimize and neutralize indoor air pollutants such as bacteria, viruses, mold, gases (VOCs) and odors.
 - PHI utilizes a broad-spectrum, high intensity UV light targeted on a hydrated quad-metallic catalyst surface. This target surface is covered with a proprietary quad-metallic and hydrophilic coating. The UV light reacts with the catalyst and moisture to produce an advanced oxidation plasma consisting of hydro-peroxides, super oxide ions and hydroxide ions. These friendly oxidizers will revert back to oxygen and hydrogen once they've come in contact with and eliminated the pollutant.

Bipolar Ionization & NPBI

- <u>https://alphamechanicalservice.com/serviceareas/kentucky/louisville/bipola</u> <u>r-ionization-technology/</u>
- NPBI
- https://www.midwestmedicaledition.com/2020/07/09/320800/needlepointbipolar-ionization-system-from-hvac-elements-provides-protection-fromsars-cov-2-and-more
- Global Plasma Solutions has a cost effective, easy to install solution that achieves these goals without excessive long term costs or maintenance. By utilizing Needlepoint Bipolar Ionization, GPS units generate a high voltage field that creates positive and negative ions. These ions travel through the airstream and actively target contaminants in the air field, strips them of hydrogen and reduces them to harmless base compounds.

Functional Decomposition cont.

- Promote Sustainability
 - Minimize operating costs
 - Improve system longevity
 - Optimize energy-efficiency
 - Fit existing HVAC systems

Jake Hamilton

Pairwise Comparison

Binary Pairwise Comparison								
	1	2	3	4	5	Total		
1. Air Quality	-	1	1	1	1	4		
2. Longevity	0	-	0	1	0	1		
3. Energy Efficiency	0	1	-	1	0	2		
4. Total Cost	0	0	0	-	1	1		
5. Retrofit	0	1	1	0	-	2		
Total	0	3	2	4	1	10		

House of Quality

House of Quality								
Engineering Characteristics								
Improvement Direction		\downarrow \downarrow \uparrow		\checkmark	\checkmark			
Units		kg	kW	m^3/s	ppm	USD		
Customer Requirements	Importance Weight Factor	Mass	Energy Consumption	Flow Rate	Contaminant Concentration	Installation cost		
1. Air Quality	4		3	9	9			
2. Longevity	1			9	9			
3. Energy Efficiency	2		9	3				
4. Total Cost	1					9		
5. Retrofit	2	3				9		
Raw Score	159	6	30	51	45	27		
Relative Weight % 0.038		0.038	0.189	0.321	0.283	0.170		
Rank Order		5	3	1	2	4		

Pugh Chart

Pugh Matrix - 1									
		Concepts							
Engineering Characteristics		1	2	3	4	5	6	7	8
Mass	Datum	+	+	+	+	+	-	S	+
Energy Consumption		+	+	+	-	+	+	+	+
Flow Rate		-	-	-	+	-	+	-	-
Contaminant Concentration		+	+	+	+	+	+	+	+
Installation cost		+	-	-	+	+	-	+	+
# of pluses		4	3	3	4	4	3	3	4
# of minuses		1	2	2	1	1	2	1	1

Pugh Chart continued

Pugh Matrix - 2							
	Concepts						
Engineering Characteristics		1	4	5	8		
Mass		+	+	+	+		
Energy Consumption	Datum	+	-	+	+		
Flow Rate	Concept	-	+	+	+		
Contaminant Concentration 2		+	+	+	+		
Installation cost		+	+	-	+		
# of pluses	4	4	4	5			
# of minuses	1	1	1	0			

Dry Hydrogen Peroxide

- <u>https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=507840</u>
- <u>http://apicnyc.org/uploads/3/4/0/6/34063157/presentation_-</u> <u>michelle_vignari_- dry_h202_-</u> <u>nov_20_2018_web_copy_.pdf</u>

Functional Decomposition cont.

- Control System
 - Maintain recommended humidity levels
 - Maintain recommended CO2 levels
 - Maintain comfortable temperature
 - Monitor VOC concentration

Jake Hamilton

