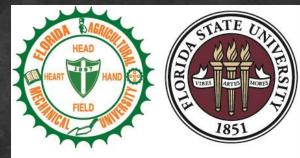
Sprinter Data

Department of Mechanical Engineering and Industrial Engineering

Team Introductions

Dylan Cedeno Project Manager

Marc Griffiths Design Engineer Jordan Noyes *Quality Engineer* Presenter Handy A Pierre *Research Engineer* Presenter


Edwin Ulysse Data Engineer Presenter

Jordan Noyes

Department of Mechanical Engineering and Industrial Engineering

Sponsor and Advisor

FAMU-FSU Engineering

Sponsor FAMU-FSU College of Engineering Academic Institution

<u>Academic Advisor</u> Jonathon Clark, Ph.D. *Associate Professor*

Jordan Noyes

Department of Mechanical Engineering and Industrial Engineering

Summarizing SD1

Jordan Noyes

Department of Mechanical Engineering and Industrial Engineering

Summarizing SD1

Objective

The objective of this project is to create a desirable product that will objectively measure and predict a sprinter's performance.

Jordan Noyes

Department of Mechanical Engineering and Industrial Engineering

Assumptions

Range of sprinter heights from 5'6" to 6'4"
User has prior experience with sprinting
User has access to a laptop or smartphone
Sprinter starting in a standard starting block
Product will be used on a collegiate approved track
Product will be used in fair weather
Consumer is more concerned about accuracy than price

Jordan Noyes

Summarizing SD1

Markets

Jordan Noyes

Department of Mechanical Engineering and Industrial Engineering

Key Goals

Objectively measure a sprinter's performance

- オ Takeoff form
- オ Instantaneous velocity

Predict a sprinter's performance

- オ Personalized inputs
- ネ Creating trends based on inputs and measurements

A product that will be desirable for purchase

- オ Cost effective
- オ Self-contained
- オ Minimal hinderance to performance

Jordan Noyes

Department of Mechanical Engineering and Industrial Engineering

Functions and Targets

Measure Sprinter's Performance:

- オ Gauge line of attack
- * Observe second step and associated stride length
- オ Calculate impulse from the block
- オ Record starter gun reaction time
- オ Track instantaneous velocity

Target: Accurate within 2%

Predict a Sprinter's Performance:

- オ Retrieve personalized inputs
 - オ Target: Inputs stored within 5 seconds
- オ Create trends
 - オ Target: within 15 seconds of request time
- オ Store Data
 - オ Targets: 720 pixels at 60
 frames per second; max 10
 MB per trial

Product is Desirable for Purchase:

- オ Make product cost effective
 - オ Target: purchase price under \$15,000
- オ Product is self-contained
 - オ Target: \$0.00 spent outside of product purchase
- オ Product has low hinderance on performance
 - オ Target: wearable weighs less than 1 kg

Jordan Noyes

Other Targets

*Tool incorporates at least 5 different professionals

オA measurement greater than 5% difference form professional is a potential weakness

ネ A battery life of at least 3 hours

Jordan Noyes

Department of Mechanical Engineering and Industrial Engineering

Summarizing SD1

Concept Generation & Selection

Concept Generation Tools:

- オ Crap Shoot
- オ Morphological Chart
- オ Biomimicry

8 Fidelity Concepts (100 Concepts Created)

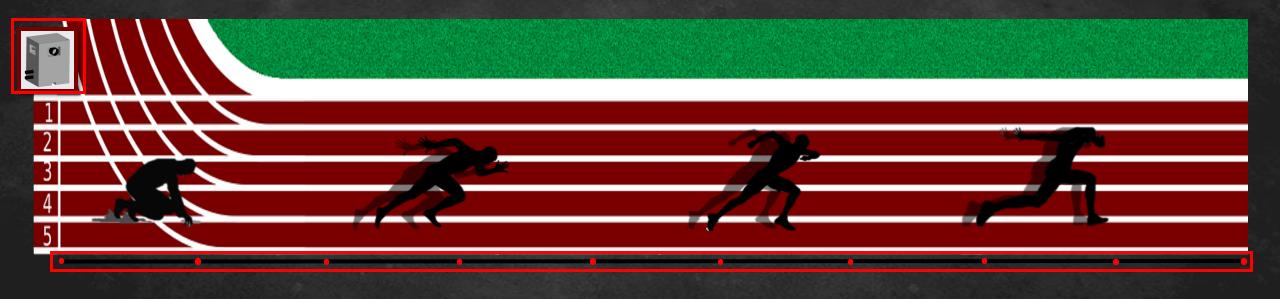
Concept Selection Process (Pugh Chart and the AHP)

Final Concept: Launch Monitor Pro

Jordan Noyes

Department of Mechanical Engineering and Industrial Engineering

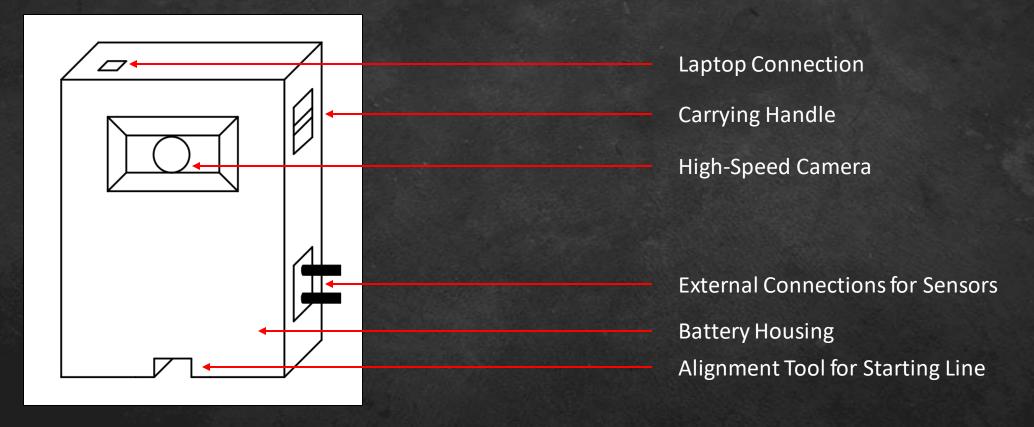
Concept Breakdown


Handy A Pierre & Edwin Ulysse

Department of Mechanical Engineering and Industrial Engineering

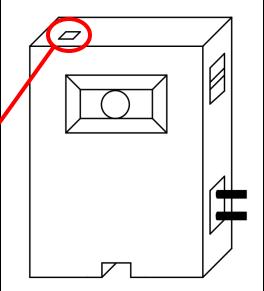
Concept Breakdown

Launch Monitor Pro Overview



Handy A Pierre

Department of Mechanical Engineering and Industrial Engineering


Base Station Details

Handy A Pierre

Department of Mechanical Engineering and Industrial Engineering

オ USB port embedded in housing for laptop connection

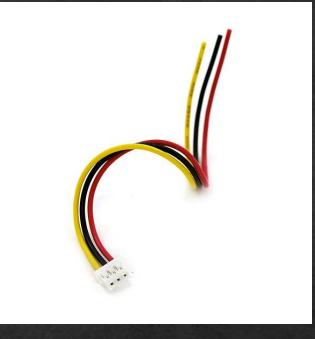
Department of Mechanical Engineering and Industrial Engineering

High-Speed Camera

 オ Takes in data from the sprinter in the form of frames which are then analyzed for all desired starting measurements.

Functions: Gauge line of attack; Observe second step and associated stride length

Handy A Pierre


Department of Mechanical Engineering and Industrial Engineering

Housing Sensor Connectors

オ Embedded in housing

オ Used to connect infrared sensors and impulse sensors to the housing

Handy A Pierre

Department of Mechanical Engineering and Industrial Engineering

Arduino

- オ Takes in data from the sensors and camera to formulate sets of measurements.
- オ Allows interaction between the system and a device.

Functions: Retrieve personalized inputs; Product is self-contained; Create trends

Handy A Pierre

Department of Mechanical Engineering and Industrial Engineering

Housing

- オ Stores the camera, Arduino, wires, and power-source.
- * Establish a medium for the connection of wires.
- オ Protect the electric-components of the Technology from outside effects.

Function: Product is self-contained

Handy A Pierre

Department of Mechanical Engineering and Industrial Engineering

Power Supply

オ Battery used to supply the technology with power

Function: Product is self-contained

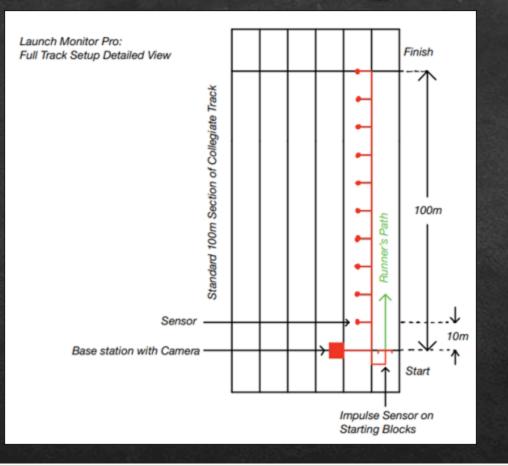
Handy A Pierre

Department of Mechanical Engineering and Industrial Engineering

Audio Recorder

オ Will be used to record the starter gun sound

Function: Starter gun reaction time



Handy A Pierre

Department of Mechanical Engineering and Industrial Engineering

Track Details

Edwin Ulysse

Department of Mechanical Engineering and Industrial Engineering

Dots on Sprinter

- オ Dots placed along the sprinter
- * Will not hinder sprinter's performance

Function: Gauge line of attack; Product has low hinderance on performance

Edwin Ulysse

Department of Mechanical Engineering and Industrial Engineering

Impulse Sensor

- オ One sensor on front block
 - オ This will be the block that experiences the most force

Function: Calculate impulse from the block

Standard starting blocks not provided

Edwin Ulysse

Department of Mechanical Engineering and Industrial Engineering

Measuring Tape

- オ 30m measuring tape
- * Will be placed along the start of the track

Function: Observe second step and associated stride length

Edwin Ulysse

Department of Mechanical Engineering and Industrial Engineering

Infrared Sensors

* Records position of the sprinter as a function of time, to determine their instantaneous velocity in 10m intervals

Function: Track instantaneous velocity

Edwin Ulysse

Department of Mechanical Engineering and Industrial Engineering

Concept Breakdown: Performance Prediction

Performance Prediction

Edwin Ulysse

Department of Mechanical Engineering and Industrial Engineering

Functions Check

Department of Mechanical Engineering and Industrial Engineering

Functions Covered

Measure Sprinter's Performance:

- オ Gauge line of attack
- オ Observe second step and associated stride length
- オ Calculate impulse from the block
- オ Record starter gun reaction time
- 🖈 Track instantaneous velocity 🔽

- Predict a Sprinter's Performance:
- 🖈 Retrieve personalized inputs 🗹

 \checkmark

- オ Create trends
- ネ Store Data

 \checkmark

 \checkmark

 \checkmark

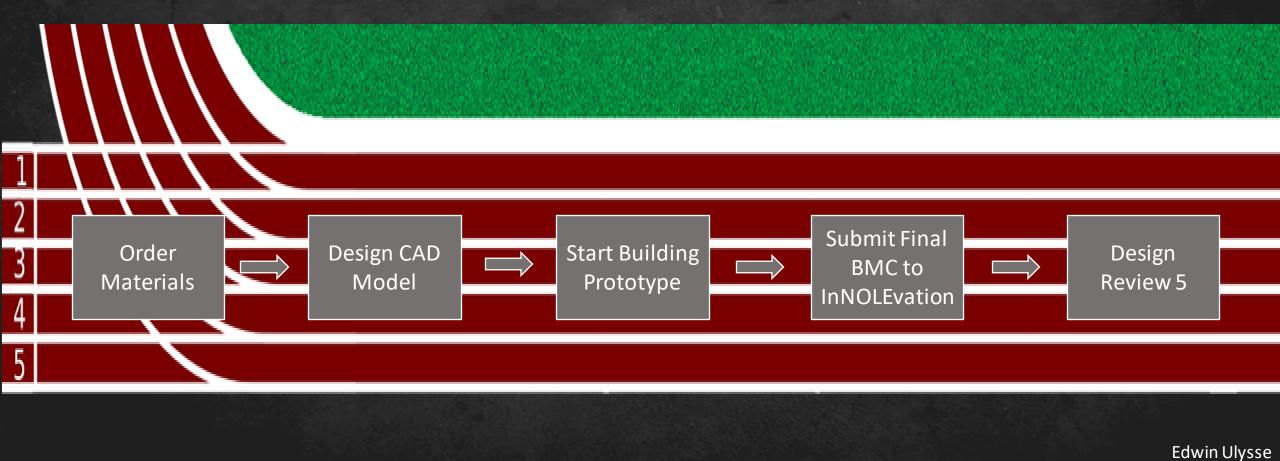
Product is Desirable for Purchase:

- オ Make product cost effective
- オ Product is self-contained
- オ Product has low hinderance on performance

Edwin Ulysse

Remaining Functions

オ Store data


オ Data will be stored in the user interface of the application that will be downloaded on the user's hardware

オ Make product cost effective

- * All parts were selected with a limited budget in mind
- * There will be varying price models available for consumer purchase

Future Work



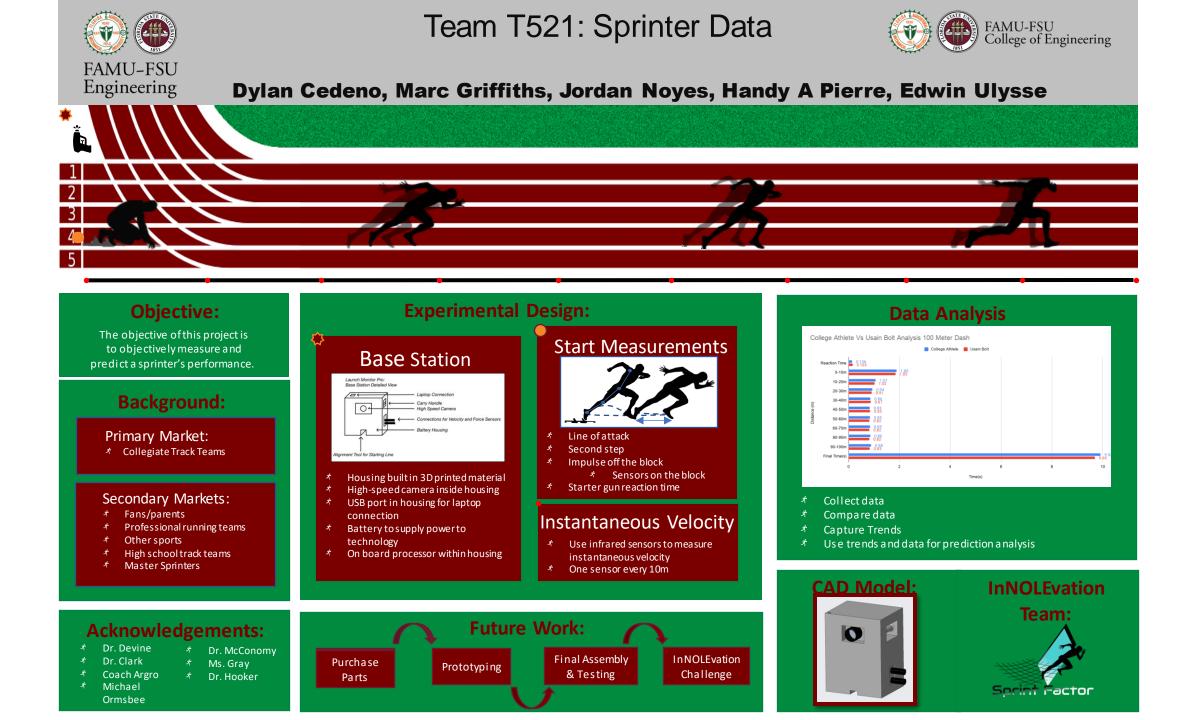
Department of Mechanical Engineering and Industrial Engineering

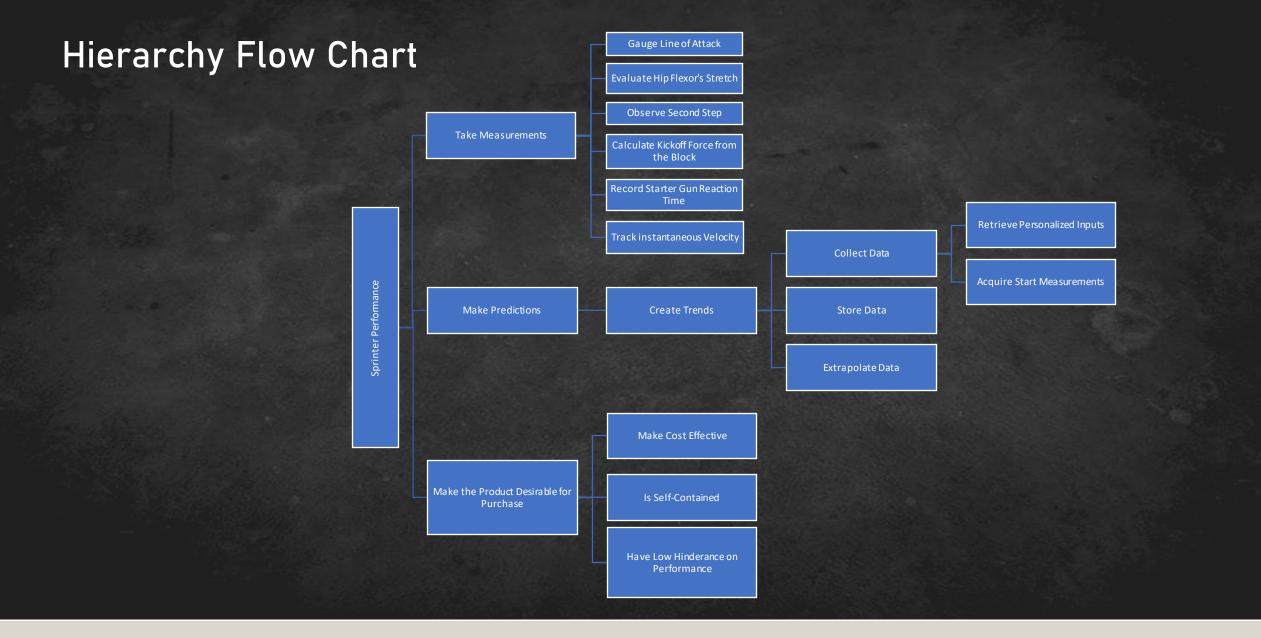
References

- https://simplifaster.com/articles/contact-length-sprinting-speed/
- https://www.robotshop.com/en/gravity-adjustable-infrared-sensor-switch-0-200cm.html
- https://www.uline.com/Product/Detail/S-11441G/Inventory-Labels/Removable-Adhesive-Circle-Labels-Fluorescent-Green-1
- https://www.readymaderc.com/products/details/runcam-2-orange
- https://www.mouser.com/ProductDetail/Measurement-Specialties/FC2331-0000-0250-L?gs=%2Fha2pyFadujAcSl6CN5pIYO6WA8FlwYg8JSEgUbhuaTLavI4ZQOcpKAymRqJ4p0X&utm_source=octopart&utm_medium=aggregator&utm_campaign=824-FC2331-00000250L&utm_content=TE%20Connectivity&tetid=R9TeESmvAY
- http://ontrackandfield.com/measuring-tape-komelon-fiberglass-open-reel/
- <u>https://www.dataversity.net/what-is-data-storage/</u>
- https://www.google.com/imgres?imgurl=https%3A%2F%2F3dprintingforbeginners.com%2Fwp-content%2Fuploads%2F2013%2F02%2FABS-Filament-Spools.jpg&imgrefurl=https%3A%2F%2F3dprintingforbeginners.com%2Ffilamentprimer%2F&tbnid=B6ovIHCFOxhioM&vet=12ahUKEwjdsJbJn6nuAhXJQUIHHTuHCc8QMygBegUIA RDsAQ..i&docid=RcLABEe3kgxRfM&w=625&h=375&q=3d%20printing%20material&ved=2ahUKEwjdsJbJn6nuAhXJQUIHHTuHCc8QMygBegUIARDsAQ
- https://www.sparkfun.com/products/8733
- https://www.ametron.com/samson-go-mic-direct-portable-usb-microphone-with-noise-cancellation-technology
- https://www.te.com/usa-en/product-6364372-2.html?te_bu=Cor&te_type=srch&te_campaign=ggl_usa_cor-ggl-usa-srch-selectmktg-fy21-googlefeed_sma_sma-1735_94&elqCampaignId=95278&mkwid=mobaVbvD%7Cpcrid%7C386964346943%7Cpkw%7C%7Cpmt%7C%7Cpdv%7Cc%7Cslid%7C%7Cproductid%7C6364372-2%7Cpgrid%7C78782457763%7Cptaid%7Cpla-1016296564002%7C&utm_content=mobaVbvD%7Cpcrid%7C386964346943%7Cpkw%7C%7Cpmt%7C%7Cpdv%7Cc%7Cslid%7C%7Cproductid%7C6364372-2%7Cpgrid%7C78782457763%7Cptaid%7Cpla-2%7Cpgrid%7C78782457763%7Cptaid%7Cpla-1016296564002&gclid=Cj0KCQiAkuP9BRCkARIsAKGLE8UM9pHmNco6CE0eNi2BBOQUnXQjsORumOzOVN4a0Bjew_H& VBMHmcaAgo7EALw_wcB

Thank You for Listening!

Our mission is to utilize technology to enhance the performance of athletes and help them maximize their full potential.


Department of Mechanical Engineering and Industrial Engineering



Backup Slides

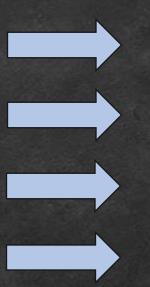
Department of Mechanical Engineering and Industrial Engineering

Department of Mechanical Engineering and Industrial Engineering

	Function/Need	Metric	Target	
arget Catalog	*Gauge Line of Attack	Accuracy of measuring the angle at the ankle, knee, hip, shoulder	Accurate within 2%	
	*Observe Second Step	Accuracy of measuring the height off the ground from the blocks	Accurate within 2%	
	*Measure Stride Length	Accuracy of measuring the length from the second step to the third step	Accurate within 2%	
	*Calculate Impulse from the Block	Accuracy of calculating the force off the block, with respect to time	Accurate within 2%	
	*Record Starter Gun Reaction Time	Accuracy of recording the time from the starter gun sound to impulse rise	Accurate within 2%	
	*Track Instantaneous Velocity	Accuracy of tracking the velocity at every 5 meters	Accurate within 2%	
	Create Trends	Time it takes to output relationships between measurements	Within 15 seconds of request time	
	Store Data	Compression and frame rate of videos recorded	720 pixels at 60 frames per second	
		Amount of storage taken by data collected	Maximum of 10 megabytes per trial	
	Retrieve Personalized Inputs	Time it takes to store the inputs of the athlete being measured, given by the athlete	Inputs stored in under 5 seconds	
	Make Product Cost Effective	Desired cost to keep the purchase price under	Keep purchase price under \$15,000	
	Product Is Self-Contained	Additional purchase necessary outside of product	\$0.00 spent outside of product purchase	
	*Product has Low Hinderance on Performance	If a wearable is used, the weight it must stay under	Wearable must weigh less than 1 kilogram (~2 pounds)	
	The tool incorporates professional sprinters and eases the effort required for sprinter comparisons	Number of professional athletes the technology needs to store statistics for	At least 5 different professionals	
	The analysis from the product exposes users' fundamental weaknesses	Percent difference between measurements of the user and the compared professional that is pointed out as a potential weakness	A measurement greater than 5% difference from professional is a potential weakness	
	*The technology needs to be able to be used daily for about two hours at a time	The battery life needed for the technology to hold between charges	A battery life of at least 3 hours	

Tai

Crap Shoot


People	Common Activities	Potential Resources	
Sprinters	Sprinting	Video	
Coach	Competing	Sensors	
Scout	Training	Stopwatch	
Parents	Performing	Sprinter blocks	
Fans	Exercising	Wearable	
Athletes	Supporting	Software/ application	

Tension Cord Training Mechanism

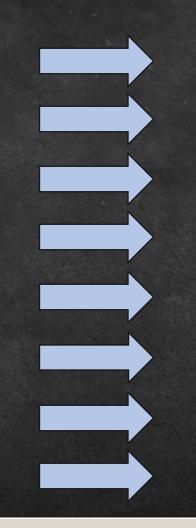
Functions

- オ Gauge the line of attack
- オ Instantaneous velocity
- オ Product has low hinderance on performance
- オ Collect data
- オ Create trends
- オ Make the product cost effective

Solutions

- オ Take a video
- * Tension cord and encoder
- オ Lightweight tension cord
- ৰ্শ Server
- オ Line graphs
- オ Compare to other markets & lay-away

Marc Griffiths


Department of Mechanical Engineering and Industrial Engineering

All Inclusive Technology

Functions

- オ Instantaneous velocity
- オ Gauge line of attack
- オ Starter gun reaction time & kickoff force from the blocks
- オ Collect data & create trends
- オ Store data
- オ Make the product cost effective
- オ Product is self-contained
- オ Product has low hinderance on performance

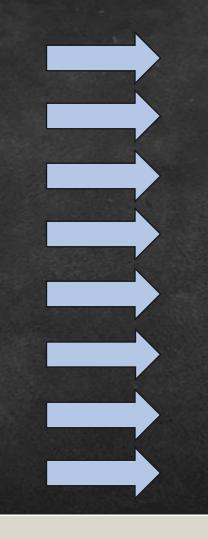
Laser sensor

л^{*}

Solutions

- র্গ Dots on the sprinter
- Force sensor on the blocks
- オ Personalized inputs & line graphs
- ネ Compressed folder
- オ Cheaper parts & renting option
- オ All parts included
- パ No wearable

Marc Griffiths

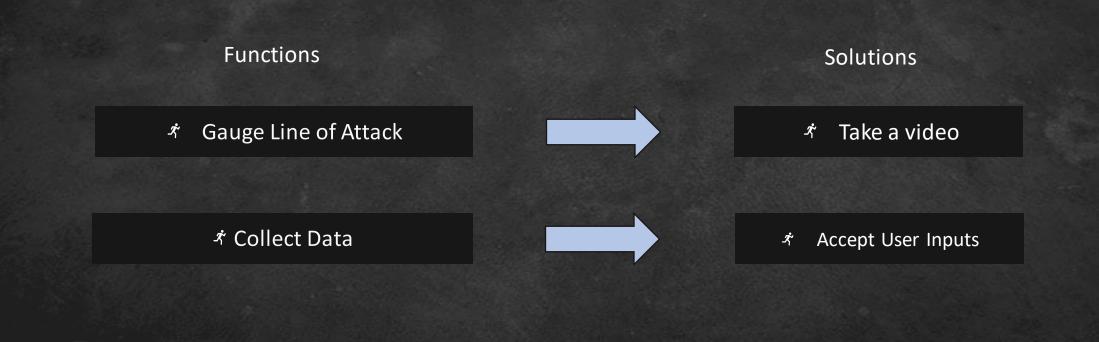

Department of Mechanical Engineering and Industrial Engineering

Launch Monitor Pro

Functions

- オ Instantaneous velocity
- オ Gauge line of attack
- ・ Kickoff force from the blocks
- オ Observe the second step
- オ Store data
- オ Make the product cost effective
- オ Product is self-contained
- オ Product has low hinderance on performance

Solutions

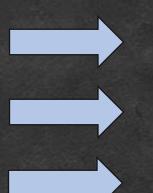

- র্শ Infrared sensor
- ☆ Dots on the sprinter & take a video
- Impulse sensor on the blocks
- ・ Measuring tape
- オ User's device
- た Cheaper parts & renting option
- オ Default apps on phone/laptop
- オ Lightweight wearable

Marc Griffiths

Department of Mechanical Engineering and Industrial Engineering

Concept 1: User Based System

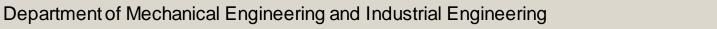
Marc Griffiths


Department of Mechanical Engineering and Industrial Engineering

Concept 2: Dots and Infrared

Functions

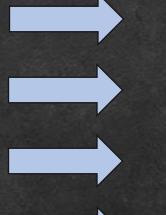
- オ Instantaneous velocity
- オ Starter Gun Reaction Time
- オ Kickoff force from the blocks
- オ Incorporate professionals for comparison
- ★ Make the product cost efficient



Solutions

- オ Infrared Sensors
- オ Take a video
- র্শ Impulse sensor
- オ Store Data
- オ Subscription plan

Marc Griffiths



Concept 3: Lasers, Springs, and Radar Guns

Functions

- オ Observe second step
- ・ Kickoff force from the blocks
- オ Instantaneous Velocity
- オ Collect data
- オ Make the product cost efficient

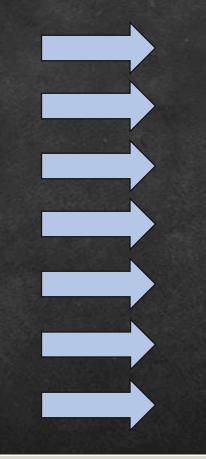
Solutions

- র্শ Laser sensor
- オ Spring that retains compression

オ Radar gun

- * Pre-run measurements
- র্শ Lay-away plan

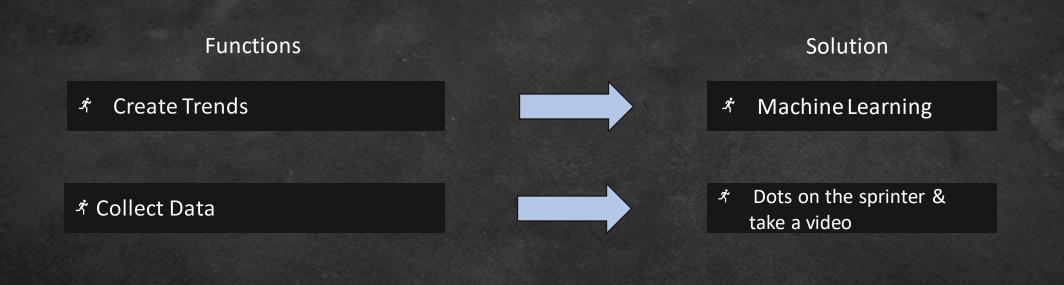
Marc Griffiths


Department of Mechanical Engineering and Industrial Engineering

Concept 4: Lasers, Dots, and Sensors with Professionals

Functions

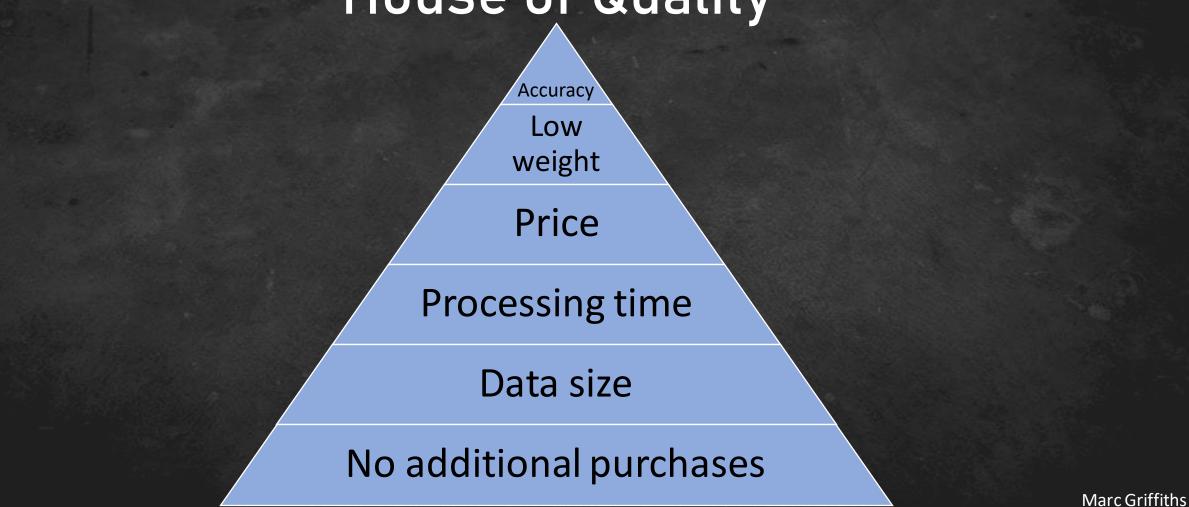
- オ Instantaneous velocity
- ☆ Gauge line of attack & observe the second step
- オ Starter gun reaction time
- オ Collect data
- オ Store data
- オ Make the product cost effective
- オ Product is self-contained


Solutions

- ネ Laser sensor
- オ Dots on the sprinter
- オ Force sensor on the blocks
- オ Sprint Records
- ৰ্শ Server
- ^オ Cheaper parts
- র্শ All parts included

Department of Mechanical Engineering and Industrial Engineering

Concept 5: Machine Learning Prediction



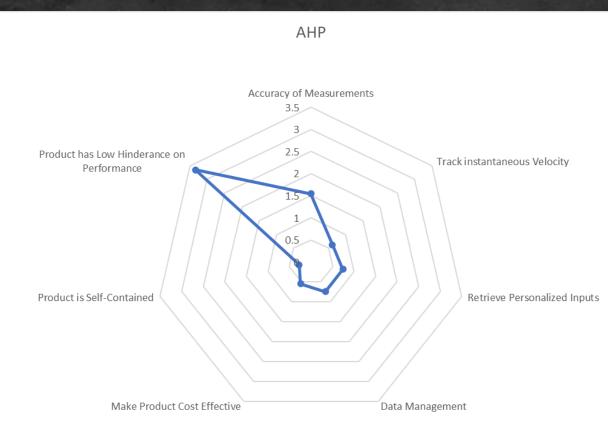
Marc Griffiths

Department of Mechanical Engineering and Industrial Engineering

House of Quality

Department of Mechanical Engineering and Industrial Engineering

Pugh Chart


Pugh Chart 3							
Selection Criteria	4	6	7	8			
Gauge Line of Attack		-	S	S			
Observe Second Step		S	S	S			
Calculate Kickoff Force from the Block		S	S	S			
Record Starter Gun Reaction Time		S	+	+			
Track Instantaneous Velocity		-	S	S			
Retrieve Personalized Inputs		+	S	S			
Collect Data	Σ		S	S			
Store Data	DATUM	S	-	-			
Create Trends		-	S	-			
Make Product Cost Effective		+	+	-			
Product is Self-Contained		S	S	S			
Product has Low Hinderance on Performance		-	S	S			
# of pluses		2	2	1			
# of Minuses		4	1	3			

Marc Griffiths

Department of Mechanical Engineering and Industrial Engineering

AHP

Marc Griffiths

Department of Mechanical Engineering and Industrial Engineering

