Sprinter Data

Team 521

Team Introductions

Dylan Cedeno Project Manager

Marc Griffiths Design Engineer Jordan Noyes Quality Engineer

Handy A Pierre Research Engineer

Edwin Ulysse Data Engineer

Department of Mechanical and Industrial Engineering

Sponsor and Advisor

FAMU-FSU Engineering

Sponsor FAMU-FSU College of Engineering Academic Institution <u>Academic Advisor</u> Jonathon Clark, Ph.D. *Associate Professor*

Department of Mechanical and Industrial Engineering

Jordan Noyes and Handy A Pierre

Department of Mechanical and Industrial Engineering

Motivation

 オ Every athlete wants to perform at a higher level
 オ There is no wholistic way to objectively measure or predict sprinter performance

Jordan Noyes

Objective

The objective of this project is to create a desirable product that will objectively measure and predict a sprinter's performance

Jordan Noyes

Competitors 1080 Sprint

オ Advantages:

- オ Tension cord that offers resistance and assistance
- র্শ Successful training tool
- オ Disadvantages:
 - オ Does not retrieve valuable measurements
 - ネ Does not have a prediction model ネ VERY expensive

Jordan Noyes

Competitors Trackman

Advantages:
Launch Monitor mechanism that tracks data
Successful golf tool
Successful golf tool
Can only be used for golf
VERY expensive

Jordan Noyes

Jordan Noyes

Department of Mechanical and Industrial Engineering

Assumptions

* Product will be used in fair weather
* User has prior experience with sprinting
* Sprinter starts in a standard starting block
* User has access to a laptop or smartphone
* Device is used on a collegiate approved track

Jordan Noyes

Customer Background

Personas

Sprinter

Coach

Scout

Jordan Noyes

Measurement Functions

★ Function: Gauge the line of attack

オ Target: Accurate within 2%

Angle between joints (degrees)

Jordan Noyes

12

Measurement Functions

 ☆ Function: Observe the second step and associated stride length
 ☆ Target: Accurate within 2%

Length of stride and height of second step (meters)

Jordan Noyes

13

Measurement Functions

 ネ Function: Calculate the impulse out of the block
 ネ Target: Accurate within 2%

Impulse = Force * time (N * s)

Jordan Noyes

Measurement Functions

 ネ Function: Record the starter gun reaction time
 ネ Target: Accurate within 2%

Time it takes to react (seconds)

Jordan Noyes

Department of Mechanical and Industrial Engineering

Measurement Functions

 ☆ Function: Track the average velocity throughout the race
 ☆ Target: Accurate within 2%

Jordan Noyes

16

Prediction Functions

 ネ Function: Create trends
 ネ Target: Find which measurements correlate to time

32 trials for accurate prediction

Jordan Noyes

Prediction Functions

- * Need: Product exposes sprinters' weaknesses
- ☆ Target: A measurement not correlated to time means inconsistency in form

Coaches and sprinters make final decision on how to analyze results

Jordan Noyes

Functions and Targets Basic Function

 * Need: Technology has sufficient battery life
 * Target: Device has a battery life

of at least three hours

Track practices are daily for approximately 2 hours

Jordan Noyes

19

Concept Generation and Selection

Concept Generation

Generated over 100 different ideas using

- オ Biomimicry
- オ MorphologicalFlow Chart
- オ Randomization

Selected 8 total concepts オ High Fidelity オ Medium Fidelity

Handy A Pierre

Concept Generation and Selection

Concept Selection

Selected 8 total concepts 术 High Fidelity 术 Medium Fidelity Objectively analyzed the concepts ネ House of Quality ネ Pugh Chart ネ AHP

Handy A Pierre

Concept Generation and Selection

Selected Concept: Launch Monitor Pro

Handy A Pierre

Department of Mechanical and Industrial Engineering

Detailed Design

Dylan Cedeno and Edwin Ulysse

Department of Mechanical and Industrial Engineering

Detailed Design

* Base Station * High Speed Camera * Processor * Power Supply オ Impulse Sensors オ On the blocks ネ Infrared Sensors ネ At 10m intervals along the track

Dylan Cedeno

Base Station

Dylan Cedeno

Detailed Design

Prediction Model

ネ Personalized inputs
ネ Access and explore data
ネ Preprocess data
ネ Develop model
ネ Integrate analytics with systems

Edwin Ulysse

Department of Mechanical and Industrial Engineering

Detailed Design

Prediction Model

User Interface

Edwin Ulysse

Department of Mechanical and Industrial Engineering

Prediction Model

User Interface

Edwin Ulysse

Dylan Cedeno, Handy A Pierre, and Edwin Ulysse

Department of Mechanical and Industrial Engineering

Base Station

CAD Model – Preliminary Model

- ☆ Raspberry Pi 4b, wiring, high speed camera, Arduino and battery pack within housing
- オ Original plan: 3D print housing

Dylan Cedeno

Base Station

Modular Prototype

☆ Created to get an idea of dimensions
☆ Modularity allowed for movement of shelves
☆ After tinkering, allowed for a more ideal final concept

Dylan Cedeno

Base Station

CAD Model – Final Assembly

☆ Maintained same basic principles with small changes for functionality

オ Main Changes
 オ Proportions
 オ Carry Handles
 オ USB locations

Dylan Cedeno

Base Station

Final Prototype

ネ Laser cut acrylic
ネ Houses all components
ネ Camera
ネ Raspberry Pi
ネ Arduino
ネ Power Supply
ネ Wires

Dylan Cedeno

Measurements

Department of Mechanical and Industrial Engineering

Prediction Model

Linear Regression Model

★Use correlating independent variables from ANOVA test for linear regression prediction

Edwin Ulysse

Insignificant Data: Impulse and Time

Edwin Ulysse

Significant Data: Line of Attack and Time

SUMMARY OUTPUT									
Regression Statistic	cs								
Multiple R	0.41529809								
R Square	0.1724725								
Adjusted R Square	0.14488825								
Standard Error	0.57915113								
Observations	32								
ANOVA									
	df	SS	MS	F	Significance F				
Regression	1	2.09721279	2.09721279	6.25257176	<mark>0.018094</mark>				
Residual	30	<mark>10.0624809</mark>	541603			,			
Total	31	12.1596936	,						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	
Intercept	10.3149909	0.19341522	53.3308135	2.7607E-31	9.91998436	10.7099975	9.91998436	10.7099975	
line of attack(angle)	-0.022717	0.00908493	-2.5005143	0.018094	-0.0412709	-0.0041631	-0.0412709	-0.0041631	

Edwin Ulysse

Incomplete Work

Dylan Cedeno

Department of Mechanical and Industrial Engineering

Incomplete Work

Incomplete Work

Reason for Incompleteness Future Work for Completion

Dylan Cedeno

Base Station Prototype

オ Does not have fully functioning camera

オ Power supply and camera never came in オ Used an old camera from the lab オ Used a personal power supply

オ All components will work as intended

Dylan Cedeno

Measurements Validation

オAll, refined measurements were not fully obtained オMost rough proof of concept measurements were gathered

- ネ Raspberry pi came in much later than planned
 - オ Lack of expertise in computer programming led to difficulty with implementation
 - オ Lack of knowledge about Raspberry Pi's led to unpolished system of taking measurements
- オ Fully gathered and refined measurements packed for the user's easy visualization

オ Did not run 32 tests for true validation of prediction model

- * Not all measurements were able to be obtained in a usable manner
 - * We could not develop a final model based on real measurements

Dylan Cedeno

Lessons Learned

Marc Griffiths

Lessons Learned

Obstacle encountered

What we should have done to avoid it

How we overcame it

Marc Griffiths

Processor Selection

- オ We were not knowledgeable in Raspberry Pi or its coding system, Python
 - * Wanted to use Arduino, but Raspberry Pi is better for complex systems
- オ Raspberry Pi 4b came in very late
- オ Should have gotten help sooner and decided on processing system earlier
 - * More time to learn about coding on the system
 - オ Used Arduino through the Raspberry Pi オ C programming rather than Python

Marc Griffiths

Material Selection

- オ 3D printing did not go well
 - * Prints were inaccurate with CAD measurements, scaling was off

র্গ Should have done more research to save time and energy

- オ Laser cut the material in Acrylic
 - オ Created perfect measurements, scaling, and tolerances
 - オ Very aesthetically pleasing

Marc Griffiths

Market in Entrepreneurship

イ Our market size is too small for entrepreneurship
 イ Believed reason to have lost the InNOLEvation Challenge

- オ Should have explored market research sooner
- オ Should have considered a more general product to expand market to other sports
- オ Plan to modify product to be used for other athletes

Marc Griffiths

48

Summary

Department of Mechanical and Industrial Engineering

In Conclusion...

⊀ Started design from nothing

オ Only given a project brief for the project, no preceding project to work off オ Had to conceptualize targets, metrics, markets, etc.

- オ Designed and began validating a revolutionary product オ Made it to the Semi-Finals of the InNOLEvation Challenge
- A Created a product that we are proud of
 - * Learned more than anticipated in the process
- A Set up our project to be completed by future groups

Marc Griffiths

Thank You – Contact Us!

Dylan Cedeno dic16@my.fsu.edu Marc Griffiths mg18df@my.fsu.edu

Jordan Noyes jmn17@my.fsu.edu

Handy A Pierre hap17b@my.fsu.edu

Edwin Ulysse eru17b@my.fsu.edu

Backup Slides

Department of Mechanical and Industrial Engineering

Assumptions

⊀ Range of sprinter heights from 5'6" to 6'4" A User has prior experience with sprinting オ Sprinter starts in a standard starting block *★* Device is used in fair weather オ User will not have access to a power outlet A Device used on a collegiate approved track A Consumer is more concerned about accuracy than price

Jordan Noyes

Project Background

Markets

Marc Griffiths

Department of Mechanical and Industrial Engineering

Key Goals

A product that will be desirable for purchase

- オ Cost effective
- オ Self-contained
- オ Minimal hinderance to performance

Predict a sprinter's performance

- オ Personalized inputs
- オ Creating trends based on inputs

Objectively measure a sprinter's performance

- オ Takeoff form
- オ Instantaneous velocity

Functions and Targets

* Function: Store data
* Targets:
* Video quality of 720 pixels at 60 frames per second
* Storage uses a maximum of 10 megabytes per trial

Keep user's laptop storage usage to a minimum

Jordan Noyes

57

Functions and Targets

オ Function: Retrieve personalized inputs

オ Target: Inputs stored in under 5 seconds

User's input their weight and height for customized results

Jordan Noyes

Functions and Targets

オ Function: Make product costeffective

☆ Target: Keep purchase price under \$15,000

Jordan Noyes

59

Functions and Targets

 オ Function: Product is selfcontained
 オ Target: \$0.00 spent outside of product purchase

User does not need to purchase anything outside of product

Jordan Noyes

60

Functions and Targets

 ネ Function: Product has low hinderance on performance
 ネ Target: Wearable must weigh less than 1 kilogram

The wearable must not slow down the sprinter

Jordan Noyes

Functions and Targets

- * Need: The tool incorporates professional sprinters for comparison
- * Target: At least 5 different professionals

Professional sprinters of different sizes for custom comparison

Jordan Noyes

62

Concept Validation

Prediction Model Plan

 ★ Will use ANOVA to validate statistical analysis
 ★ Will do 32-36 tests on each sprinter to get accurate results

*Will compare each measurement to time to find correlations

Edwin Ulysse

- 1. Personal database
- 2. Historical data
- 3. Data cleaning & remove outliers
- 4. Statistics software (Power BI, Minitab, Python)
- 5. Software application (UI/UX)

Edwin Ulysse

Access and Explore Data

オ Import data
 オ Historical data
 オ Database or spreadsheets

Edwin Ulysse

Department of Mechanical and Industrial Engineering

Preprocess Data

* Data cleaning & remove outliers
* Combine data sources
* ANOVA testing
* Correlation between independent variables and dependent variable
* Dependent variable: time

オ Independent variables: measurements (line of attack, stride length, etc.)

Develop Model

ネ Statistics software (Power BI, Minitab, Python) ネ Access historical data ネ Train model with neural networks

Edwin Ulysse

Department of Mechanical and Industrial Engineering

Integrate Analytics with Systems

オ Python
オ Software application (UI/UX)
オ Hardware (Raspberry Pi)

Edwin Ulysse

Department of Mechanical and Industrial Engineering

Table 2: Pugh Chart 1										
Selection Criteria	1080 Sprint	1	2		3	4	5	6	7	8
Gauge Line of Attack		+	+		+	+	+	S	+	+
Observe Second Step		S			+	S	+	S	+	+
Calculate Kickoff Force from the Block		S	+		+	+	+	S	+	<mark>S</mark>
Record Starter Gun Reaction Time		+	+		+	+	+	+	+	+
Track Instantaneous Velocity		S	-		S	+	-	S	+	-
Retrieve Personalized		+	S		+	+	+	+	+	+
Collect Data	ND.	S	_		-	-	+	S	+	+
Store Data	AT	+	+		+	+	+	S	+	+
Create Trends	D	+	+		+	+	+	S	+	+
Make Product Cost Effective		+			-	-	+	S	+	-
Product is Self- Contained		+	-		-	-	+	S	-	-
Product has Low Hinderance on Performance		+	H		+	+	+	S	+	-
# of pluses		8	6		8	8	11	2	11	<mark>7</mark>
# of Minuses		0	5		3	3	2	0	1	<mark>4</mark>

Table 3: Pugh Chart 2								
Selection Criteria	8	1	3	<mark>4</mark>	5	6	7	
Gauge Line of Attack		S	-	S	S	-	S	
Observe Second Step		S		_	S	-	S	
Calculate Kickoff Force from the Block		S	ł	S		-	S	
Record Starter Gun Reaction Time		S	ł	S		-	S	
Track Instantaneous Velocity		-		-		-	-	
Retrieve Personalized		S		_		+	S	
Inputs	M							
Collect Data		S	S	S S	S	S	S	
Store Data	DA	S		+	S	+	S	
Create Trends		-		+	S	S	+	
Make Product Cost Effective		+	÷	S	S	S	+	
Product is Self-Contained		S	S	S	S	S	S	
Product has Low		-		S S	S	-	S	
Hinderance on Performance								
# of pluses		1	1	2	0	2	2	
# of Minuses		2	9	<mark>3</mark>	4	6	1	

Table 4: Pugh Chart 3								
Selection Criteria	4	6	7	8				
Gauge Line of Attack		-	S	S				
Observe Second Step		S	S	S				
Calculate Kickoff Force from the Block		S	S	S				
Record Starter Gun Reaction Time		S	+	+				
Track Instantaneous Velocity		-	S	S				
Retrieve Personalized Inputs		+	S	S				
Collect Data	MUTA S S	S	S					
Store Data		S	-	-				
Create Trends	D,	-	S	-				
Make Product Cost Effective		+	+	-				
Product is Self-Contained		S	S	S				
Product has Low Hinderance on		-	S	S				
Performance								
# of pluses		2	2	1				
# of Minuses		4	1	3				

Handy A Pierre

Concept Generation and Selection

Handy A Pierre

Generated over 100 different ideas using

- オ Biomimicry
- オ Morphological Flow Chart
- オ Randomization

Selected 8 total concepts 术 High Fidelity 术 Medium Fidelity

Handy A Pierre

House of Quality

Pugh Chart

Competitor – 1080 Sprint

- オ Accuracy (most concepts)
- オ Performance
- オ Data storage
- オ Traveling

Handy A Pierre

Selected 8 total concepts 术 High Fidelity 术 Medium Fidelity Objectively analyzed the concepts 术 House of Quality 术 Pugh Chart 术 AHP

Handy A Pierre

Department of Mechanical and Industrial Engineering

AHP

77

Department of Mechanical and Industrial Engineering

Tension Cord Training Mechanism

Functions

- オ Average velocity
- オ Gauge the line of attack
- オ Product has low hinderance on performance
- オ Store data
- র্শ Create trends
- オ Make the product cost effective

Solutions

- オ Tension cord and encoder
- オ Analyze frames
- オ Lightweight tension cord
- -শ Server
- オ Line graphs
- ネ Compare to other markets& lay-away

Handy A Pierre

All Inclusive Technology

Functions

- オ Average velocity
- オ Gauge line of attack
- オ Starter gun reaction time & kickoff force from the blocks
- オ Collect data & create trends
- オ Store data
- オ Make the product cost effective
- オ Product is self-contained
- オ Product has low hinderance on performance

Solutions

- র্শ Laser sensor
- オ Dots on the sprinter
- Force sensor on the blocks
- オ Personalized inputs & line graphs
- た Compressed folder
- オ Cheaper parts & renting option
- オ All parts included
- ネ Lightweight wearable

Handy A Pierre

Department of Mechanical and Industrial Engineering

Launch Monitor Pro

Functions

- Average velocity л^{*}
- Gauge line of attack л^{*}
- * Kickoff force from the blocks
- オ Observe the second step
- Store data л^с
- Make the product cost effective л^{*}
- Product is self-contained *Ż*
- Product has low hinderance on -Х́ performance

Solutions

- Infrared sensor л[′]
- Dots on the sprinter & л^{*} take a video
- Impulse sensor on the Л' blocks
- Measuring tape
- User's device Ľ,
- Cheaper parts & renting option
- Default apps on л^{*} phone/laptop
- Lightweight wearable -Ż

Handy A Pierre

Concept Selection

Selected the best 3

- オ Tension Cord Training Mechanism
- オ All Inclusive Technology
- オ Launch Monitor Pro

Selected a concept

Handy A Pierre

Concept Selection

Selected Concept

Launch Monitor Pro

Handy A Pierre

Department of Mechanical and Industrial Engineering

Ordering Parts

オ Many of our parts came in late or not at allオ Led to a bigger time constraint than planned

ネ Should have discussed with subject matter experts sooner
ネ Should have ordered parts immediately

オ Did the best we could given the time constraint

Marc Griffiths

83

Department of Mechanical and Industrial Engineering

Team Communication & Time Management

オ Did not use time efficiently

オ Did not communicate effectively at first

- オ Should have communicated expectations clearly to the team
- オ Should have delegated tasks to split up work
- * Should have stuck better to personal deadlines
- * We improved our communication and time management skills
- We learned what is effective in a team and what ineffective x'

Marc Griffiths

