Team 501: Landing System for Uncertain Terrain

Virtual Design Review 4

Department of Mechanical Engineering

NASA

Team Introductions

Saralyn Jenkins Mechanical Systems Engineer

Elzbieta Krekora Materials Engineer

Andrew Sak Controls Engineer

Julio Velasquez *Mechanical Engineer*

Elzbieta Krekora

Sponsor and Advisor

Engineering Mentor Cassie Bowman, Ed.D. Associate Research Professor, ASU

<u>Academic Advisor</u> Camilo Ordóñez, Ph.D. *ME Teaching Faculty*

Elzbieta Krekora

Objective

The objective of this project is to design a landing system capable of safely landing on the range of hypothesized surfaces and terrains of 16 Psyche.

Elzbieta Krekora

Project Overview

Psyche: Believed to be an exposed core of an early planetesimal that lost its rocky outer layers due to violent collisions billions of years ago

Our Mission: To design the landing system (i.e. what lands/supports the spacecraft) Terrain: Psyche has hypothesized uncertain terrain (i.e. rocky, uneven and metallic)

Elzbieta Krekora

Spacecraft

Assumptions

Test model and forces are analogous to Psyche mission variables

Elzbieta Krekora

Critical Targets

Dampens impact energy

Prevent lander from tipping

Lander can accommodate for any of the hypothesized surfaces

The system can support the weight of the lander

The lander is stable on Psyche's surface

Elzbieta Krekora

Validation of Targets

<u>Constraints:</u> Mass of Lander and Gravity	Psyche: 150 kg 0.144 $\frac{m}{s^2}$	Earth: 23 kg 9.81 $\frac{m}{s^2}$	Measure mass with appropriate scale to ensure following values are valid	
Max Impact Velocity	Psyche: 6 m/s	Earth: 0.92 m/s	Read from sensors	
Dampens Impact Energy	Psyche: 2700 J	Earth: 9.73 J	Virtual simulation of model and inspection of failed components	
Supports Weight	Psyche: 21.6 N	Earth: 225.63 N	Measure weight of final working prototype, multiply by gravity	Saralyn Jenkins

Concept Selection

Grasshopper Suspension Double A-arm Suspension

Saralyn Jenkins

9

Original Landing Feet Design

Pin screen with closely packed pins that conform to shape of surface it is placed on

Uneven terrain made of paper

Saralyn Jenkins

Adjustment of Design: Suspension

Original Design (Feet Not Shown)

Modified Design (Legs and Feet Not Shown)

Elzbieta Krekora

11

Adjustment of Design: Knuckle

Original Design of Knuckle

Modified Design of Knuckle

Elzbieta Krekora

Adjustment of Design: Additional Damping

Creo Simulation: Knuckle

Creo Simulation: Rack and Pinion

3D Print of Model - Original

Elzbieta Krekora

Prototype/Testing Planning

Elzbieta Krekora

Continuing/Future Work

Experimentation with Sensors

Ŷ

Adjust Parts List and Order Parts for Prototype

Simulate Model and Individual Components

Begin Building Test Rig and Pieces of Prototype

Saralyn Jenkins

18

Contact Information

Saralyn Jenkins Email: srj18@my.fsu.edu Connect on LinkedIn:

Elzbieta Krekora Email: ek18d@my.fsu.edu Connect on LinkedIn:

Andrew Sak Email: avs15b@my.fsu.edu Connect on LinkedIn:

Julio Velasquez Email: jav19e@my.fsu.edu Connect on LinkedIn:

