Team 501: Landing System for Uncertain Terrain

Project Disclaimer

This work was created in partial fulfillment of FAMU-FSU College of Engineering Capstone Course "EML4551-4552C." The work is a result of the Psyche Student Collaborations component of NASA's Psyche Mission (<u>https://psyche.asu.edu</u>). "Psyche: A Journey to a Metal World" [Contract number NNM16AA09C] is part of the NASA Discovery Program mission to solar system targets. Trade names and trademarks of ASU and NASA are used in this work for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by Arizona State University or National Aeronautics and Space Administration. The content is solely the responsibility of the authors and does not necessarily represent the official views of ASU or NASA.

Elzbieta Krekora

Team Introductions

Saralyn Jenkins Mechanical Systems Engineer

Elzbieta Krekora Materials Engineer

Andrew Sak Mechatronics Engineer

Julio Velasquez *Mechanical Engineer*

Elzbieta Krekora

Sponsor and Advisor

Engineering Mentor Cassie Bowman, Ed.D. Associate Research Professor, ASU

<u>Academic Advisor</u> Camilo Ordóñez, Ph.D. *ME Teaching Faculty*

Elzbieta Krekora

4

Objective

The objective of this project is to design a landing system capable of safely landing on the range of hypothesized surfaces and terrains of 16 Psyche.

Elzbieta Krekora

Project Overview

Psyche: Believed to be an exposed core of an early planetesimal that lost its rocky outer layers due to violent collisions billions of years ago

Our Mission: To design a possible future landing system (i.e. what lands/supports the spacecraft) Terrain: Scientists hypothesize that Psyche may have a range of terrain types (i.e. rocky, uneven and metallic)

Elzbieta Krekora

Spacecraft

Assumptions

Critical Targets

Dampens impact energy

Prevent lander from tipping

Lander can accommodate for any of the hypothesized surfaces

The system can support the weight of the lander

The lander is stable on Psyche's surface

Saralyn Jenkins

Validation of Targets

Saralyn Jenkins

Concept Generation

Saralyn Jenkins

Concept Selection Process

Saralyn Jenkins

Top 3 Concepts

Single Impact Leg, Springboard Base, 3 Stability Legs

Grasshopper Suspension Double A-arm Suspension

Saralyn Jenkins

12

Selected Concept

Saralyn Jenkins

Original Landing Feet Design

Pin screen with closely packed pins that conform to shape of surface it is placed on

Uneven terrain made of paper

Saralyn Jenkins

14

Prototyping Process

Elzbieta Krekora

Adjustment of Design: Legs

Julio Velasquez

Adjustment of Design: Knuckle

Julio Velasquez

FAMU-FSU

Engineering

Adjustment of Design: A-Arms

Julio Velasquez

Adjustment of Design: Damping

Prototype Model: Final

Landing Feet: Detailed View

U-Joint that attaches to leg and allows tilting of foot

Reinforced with metal screws and metal plate to support up to ~880 N

Saralyn Jenkins

Physical Prototype Assembled

Saralyn Jenkins

Motion of the Prototype

Saralyn Jenkins

Test Rig

Pulley to Lift Lander

Uneven Terrain

Andrew Sak

How It Works

Distance Sensed by Sensors	Distance sensors read the distance from the lander to the ground.
Midplane of Terrain	Midplane of the terrain is calculated by taking in the furthest distance and the closest distance to the ground.
Calculated	
Legs Adjusted Before Impact	Legs are adjusted up or down depending on the distance between the lander and the landing area of each foot.
Orientation Adjusted After	After landing, the IMU reads in the orientation of the lander and makes orientation adjustments.
Impact	

Andrew Sak

3. Find midplane between closest and farthest point

FAMU-FSU Engineering

Engineering

Points below the midplane cause actuators to extend

Points above the midplane cause actuators to retract

The actuators can control roll, ϕ , and pitch, θ

Finds linear adjustment lengths to minimize angles

Andrew Sak

Prototype Testing

Andrew Sak

Prototype After Impact

Landed prototype with all landing components undamaged

Pin screen feet gripped onto terrain

Andrew Sak

31

Outputs

Confirming Impact Velocity

- Distance sensors used to find velocity and displayed on LCD
- Camera outside test rig to measure frames to find velocity

Confirming Orientation

 Final orientation of IMU displayed onto LCD screen

x:150.859:-7.880 az:2.808z:38.067

Confirming Secured Position

- Landing base inspected for any damage to parts inside
- Any bounce or slide of prototype will be measured via a camera during testing

Elzbieta Krekora

Optimization of Sensors

Test Changing Height Terrain Test Crushable Honeycomb Damping

Transfer Design to Psyche Prototype

Elzbieta Krekora

Lessons Learned

Create Bill of Materials Early for Multiple Budgets

Plan Machining Before Materials Arrive

Test physical pieces along the way before finalizing CREO models

Elzbieta Krekora

Summary

Psyche is an asteroid with an uneven profile and uncertain terrains.

Our design was created to overcome a range of hypothesized surfaces with sufficient damping, adjustable legs, and gripping/adjustable feet.

> Our design choices have been validated through computer modeling/simulation and from physical testing.

Contact Information

Saralyn Jenkins Email: srj18@my.fsu.edu Connect on LinkedIn:

Elzbieta Krekora Email: ek18d@my.fsu.edu Connect on LinkedIn:

Andrew Sak Email: avs15b@my.fsu.edu Connect on LinkedIn:

Julio Velasquez Email: jav19e@my.fsu.edu Connect on LinkedIn:

Materials Used for Prototype

Base:

- Aluminum diamond plate
- 1-inch aluminum square tubing

A-Arms:

- 1/2 inch steel tubing
- ¾ inch steel square tubing
- M6-01 nuts
- M6-01 spherical rod ball joints
- 1 ½ inch aluminum U-channel
- Plastic spacers

Knuckle:

- Aluminum blocks
- M6-01 screws
- M6-01 nuts

Legs and Feet:

- Linear actuators
- 1 ½ inch U-channel
- 1 inch aluminum square tubing
- ¾ inch steel square tubing
- M6-01 nuts
- M6-01 screws
- Pin screens
- Aluminum diamond plate

Electronics:

- TOF laser sensor
- 9-DOF IMU
- Linear actuators
- Servo motors
- LCD

Testing Assembly:

- 2-inch square structure bars
- 90-degree mount brackets
- Floor mounts
- Pulleys
- 25-foot rope
- Counterweight
- ¾ inch plywood
- Sandbags
- Canvas drop cloth
- Polyurethane glue
- Black washed gravel
- Lava rocks
- Basalt gravel

****NOTE:** None of these materials are meant for use in space-like conditions and are for prototyping purposes only**

Sizing of Prototype

3D Print of Model

First Print

Second Print

Adjustment of Design: Knuckle

Original Design of Knuckle

Modified Design of Knuckle

Elzbieta Krekora

40

Adjustment of Design: Additional Damping

Saralyn Jenkins

Adjustment of Design: Suspension

Original Design (Feet Not Shown)

Modified Design (Legs and Feet Not Shown)

Elzbieta Krekora

42

Landing Feet Reinforcement and Testing

Reinforced with metal screws and metal plate to support up to ~880 N

Julio Velasquez

43

Prototype Model: Motion

NEED UPDATED ONE

Julio Velasquez

Prototype Model: Before Final Changes

Julio Velasquez

Adjustment of Design: Knuckle

Julio Velasquez

Adjustment of Design: Knuckle

Julio Velasquez

Evolution of Prototype

Andrew Sak

Department of Mechanical Engineering

Andrew Sak

Andrew Sak

Andrew Sak

Department of Mechanical Engineering

Calculate Adjustment Lengths from Distance Sensors Adjust Legs

Points below the midplane cause actuators to extend

Points above the midplane cause actuators to retract

Calculate Adjustment Lengths from Distance Sensors

Adjust Legs

Points below the midplane cause actuators to extend

Points above the midplane cause actuators to retract

Andrew Sak

Department of Mechanical Engineering

Calculate Adjustment Lengths from Distance Sensors

Adjust Legs

Points below the midplane cause actuators to extend

Points above the midplane cause actuators to retract

Andrew Sak

Points below the midplane cause actuators to extend

Points above the midplane cause actuators to retract

Andrew Sak

Creo Simulation: Knuckle

Saralyn Jenkins

Creo Simulation: Rack and Pinion

Simple Adams Simulation

Successful Dampers

Binary Pairwise

Bi	ary Pairwise Matrix				-	-
	The system is autonomous	Supports the spacecraft and associated components	Withstands or dissipates the potential energy from the fall and impact velocity	Adjusts to the hypothesize d terrains of Psyche	The system does not have to be reusable	Total
The system is autonomous	•	0	0	0	1	1
Supports the spececraft and associated components	1	S 24	0	1	1	2
Withstands or dissipates the potential energy from the fall and impact velocity	1		- · · · · ·	1	1	3
Adjusts to the hypothesized terrains of Psyche	1	0	0	2	1	1
The system does not have to be reusable	0	0	0	0	S	0

- Customer needs are listed in rows and the same customer needs listed in columns
- Compared against each other to determine ranking of customer needs
- 1 is assigned if row customer need is more important than the column customer need; 0 for vice versa

House of Quality

		Engineering Characteristics							
Improvement Direction Units		m*2	t	m; m/s; m/s*2,deg	deg to tip	1 N	1	deg	-
Customer Requirements	Impertance Weight	Houses Components Mandware	Supports Weight	Reach Lander Date	Presents Tapling	Demperal Impact Energy	Senses Scenounding Topography	Aqueta Orientation	Secures Position on Autoroid
The system is autonomous	1		1.	9	9	1.1.1		1.19	P
Supports the spacecraft and associated components	2				1 1	3		3	3
Withstands or dissigntes the potential energy from the fail and impact velocity	3	1	9		2		-	2000	1
Adjusts to the hypothesized temains of Payche	1			9	1.0	1			9.
The system does not have to be reusable	0	1				3		-	3
Raw Score	206	7	.45	27	24	34	- 18		27
Relative Vieight %		3,40	21.84	13.11	11.65	14.50	8.74	11.65	13.11
Rank Order			1	3	5	2	1 1		

- Gives a ranking of the engineering characteristics governing our project from most important (1) to least important (8)
- Importantance weight factor chosen from Binary Pairwise
- Determined if engineering characteristic contributed to fulfilling customer need
 - Values of 0,1,3, or 9 assigned; 0 being no contribution and 9 being the highest level of contribution

Pugh Chart

Engineering Characteristics	Concept 7	Concept 2	Concept 6	Concept 8
Houses Components\Hardware		S	S	S
Supports Weight		-	+	+
Reads Lander Data	-	S	S	S
Prevents Tipping	2	+	+	+
Dampens Impact Energy	DAI	+	S	S
Senses Sourrounding Topography	-	S	S	S
Adjusts Orientation		+	+	+
Secures Position on Asteroid		-	S	S
Total Pluses		1	3 3	3
Total Minuses			2 0	0

- Four Pugh Charts were used in total; this is the last one of the series
- Started by choosing a datum to compare the concepts too; Mars Phoenix Lander
- Every chart after the first had a new datum which was a concept similar to the last datum
- (+) assigned if that concept fulfills that engineering characteristic better than the datum; vice versa for (-); (S) if it's the same

Analytical Hierarchy Process

	Supports Weight	Dampens Impact Energy	Prevents Tipping	Secures Position on Asteroid	Reads Lander Data
Supports Weight	1.00	3.00	1.00	1.00	0.33
Dampens Impact Energy	0.33	1.00	1.00	0.33	0.11
Prevents Tipping	1.00	1.00	1.00	1.00	3.00
Secures Position on Asteroid	1.00	3.00	1.00	1.00	9.00
Reads Lander Data	3.00	9.00	0.33	0.11	1.00
Sum	6.33	17.00	4.33	3.44	13.44

- Engineering characteristics are ranked against each other with 1 denoting equal weight and 9 denoting a strong preference to one over the other
- The first one gets a weight factor for each characteristic
- This same process was done for each individual characteristic against the three final concepts

Prototyping Process

Elzbieta Krekora

Mustard #19a000 0C 36M 100Y 2K 250R 160G 0B PMS 7408U	Gold #147c33 OC 50M 80Y 4K 245R 125G 50B PMS 152U	Coral #ef5966 0C 63M 57Y 6K 239R 89G 102B PMS 192 U
Magenta #a5315b 0C 62M 45Y 35K	Purple #592651 0C 57M 9Y 65K	Dark Purple #302144 29C 51M 0Y 73K
165R 63G 91B PMS 2041 U	89R 38G 81B PMS 2356 U	48R 33G 68B PMS 2695 U

Elzbieta Krekora

Prototype/Testing

Saralyn Jenkins

68

Results

Confirming Impact Velocity

- Distance sensors used to find velocity and displayed on LCD
- Camera outside test rig to measure frames to find velocity

Confirming Orientation

 Final orientation of IMU displayed onto LCD screen

Confirming Secured Position

- Landing base will be inspected for any damage to parts inside
- Any bounce or slide of prototype will be measured via a camera during testing

Andrew Sak

Assumptions

Test model and forces are analogous to Psyche mission variables

Elzbieta Krekora

Transfer of Design

Idk if we need this, But I made it just in case we Want to clarify

Honey comb -→ shock absorber Spacegrade materials --> aluminum and plastic

Earth