Team 501: Landing System for Uncertain Terrain

FAMU-FSU Engineering

The objective of this project is to design a landing system capable of safely landing on the assumed range of hypothesized surfaces and terrains of (16) Psyche.

Previous Landers:

- Philae Lander
- Landed on a comet with icy surface
- Feet drilled into surface
- Mass: 100 kg

- Mars Phoenix Lander
- Landed on Mars with rocky flat surface
- Feet just rested on surface
- Mass: 350 kg


```
Project Goals and Critical Targets
- Lander can accommodate for hypothesized surfaces (rocky, uneven, mostly metallic terrain)
- Dampens impact energy (2700 J)
- Prevents lander from tipping ( \(\sim 10^{\circ}\) tipping angle to correct)
- Lander is stable on the surface
- Landing system can support weight of entire spacecraft ( 21.6 N on Psyche with gravity of \(0.144 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\) )
```

Landing System Broken Into Components For Concepts

Final Design

- Developed by combining different components and looking at how well they would fulfill our project goals and targets
- Design size: $(2.2 \times 1.2 \times 0.5-1) \mathrm{m}$ (adjustable height)
- Total mass of design $\sim 150 \mathrm{~kg}$
- Prototype will weigh less
- Since the prototype is not going into space the material used will be mostly aluminum

