FSGC-SAE Aero Design Team 507 - Fuselage

. .

Team 507 Introductions

Bridget Andrews Aerodynamics Engineer

John Healy Systems Engineer

Alejandro Toro Mechanical Engineer

Sponsors and Advisor

Seminole RC Club Project Sponsor

Dr. Simone Hruda

Project Advisor

Design a 3D-printed, remotecontrolled (RC) plane for the 2022 Society of Automotive Engineers (SAE) Aero Design Competition abiding by regular class restrictions.

We are not attending the competition

The aircraft will operate from short runways and complete the necessary flight path...

Alejandro Toro

...While carrying outsized spherical cargo as well as regular boxed

cargo.

Alejandro Toro

Team 507 & 508

Alejandro Toro

7

- Scope of Team 507:
- Fuselage
- Landing Gear
- Payload
- Wiring
- Electronics placement
 - Electronics (508)

Objective(Mission Flight)

Alejandro Toro

9

Key Goals

- 1. Primarily construct of 3D-printed parts
- 2. Plane can operate with and without payloads
- 3. Landing gear can withstand impact.
- 4. Landing gear can steer the airplane.

LW-PLA

Targets / Metrics

- 1. Secure Payload: Cannot move inside fuselage
- 2. Unload Payload in under one minute
- 3. Ensure Stability: Static Margin of 12%
- 4. Plane weighs 15lbs or less Fuselage weighs 5lbs or less

Fuselage Design: Static Margin

Determined

- Wing Placement
- Tail Placement
- Center of Gravity

What is Static Margin?

 The percent difference between the center of gravity and the neutral point

What is the Neutral Point?

Moment of Wing = Moment of Tail

Need:

- Static Margin to be between 10% and 15%. *12% is ideal*
- The Center of Gravity to be between 25% and 33% of the wing chord length

Bridget Andrews

Fuselage Design: Printability

Tight fit on the printer bed

- 11" x 11" printer bed
- Expected contributor: Ball and Wing Placement
- Unexpected contributor: Dihedral Wings

Solution:

• Decreased the maximum diameter by $\frac{1}{2}$ "

Result:

- Maximum Diameter of 9.86"
- Sections to wing interface did not need additional sectioning

Section 4 on Prusa Slicer

Bridget Andrews

Department of Mechanical Engineering

16

Wing Interface

Wing Spars are connected to the bracket by Cotter-Pin Lockable Screws and Bracket

Alejandro Toro

17

Payload Securement

Points of Contact

Alejandro Toro

18

Hatch

- Top loading mechanism
- Hinge + Bow tie
- Ball placed behind the wing spar
- Single latch to hold hatch down

21

Main Landing Gear Design

- Added spar through wheels
- Added epoxy putty to wing connection

John Healy

Tailwheel Design

John Healy

Validation: Primarily construct of 3D-printed parts

John Healy

Validation: Takeoff

- Plane can operate with and without payloads
- Takeoff in less than 100 ft

John Healy

Validation: Takeoff

Plane can operate with and without payloads

Takeoff in less than 100 ft

John Healy

Validation: Taxi

Landing gear can steer the airplane.

John Healy

Validation: Smooth Landing

Landing gear can withstand impact.

John Healy

Validation: Hard Landing

Landing gear can withstand impact.

John Healy

Validation: Hard Landing

Landing gear can withstand impact.

John Healy

30

Validation: THE FLIP

John Healy

Validation

Plane weighs 15lbs or less *Fuselage weighs 5lbs or less*

Actual Weight: *Plane Weight: 15.4lbs Fuselage Weight: 5.1lbs*

John Healy

Validation

Secure Payload: Cannot move inside fuselage

- Payload did not once drop or shift position during flight
- Added foam dampened vibration from the ball

- Unload soccer ball in under one minute
 - *Roughly 15 seconds* Unload rectangular payload

Static Margin Validation

Ensure Stability: Static Margin of 12%

0.3lbs of clay was added to the nose cone of the fuselage

Bridget Andrews

Lessons Learned

- Confirm CAD designs are finalized before printing
- Design for function before innovation
- Establish a task manager system from the beginning
- Plan out tasks with the team at the beginning of every week
- Start designing even when you don't have all the answers
- Have a detailed plan for validation

Bridget Andrews

Static Margin

Sectioning

Hatch

Fuselage Design

Landing Gear

Wing Interface

Payload Securement

Final Design Bridget Andrews

"Calculating Glider Ratios." *Pitsco Education*, <u>https://asset.pitsco.com/sharedimages/resources/balsa-gliders-activitysample.pdf</u>

"2022 SAE Aero Design Rules." *SAE Aero Design*, www.saeaerodesign.com/cdsweb/gen/DocumentResources .aspx.

Raymer, D. P. (1992). *Aircraft design: A conceptual approach*.

Bridget Andrews

The Team

Bridget Andrews

Bridget Andrews

Backup Slides

Upcoming Presenter's Name

43

Static Margin

Upcoming Presenter's Name

Initial Conditions

- Base Wing Chord Length: 14in
- Mean Wing Chord Length: 12.1in
- Tail Chord Length: 12in
- Horizontal Tail Area: 200in^2
- Wing Span: 85in
- Tail Span: 20in

45

Process

•
$$V_H = \operatorname{lt} * \frac{\operatorname{St}}{\operatorname{c}_{\operatorname{mean}} * \operatorname{Sw}}$$

- AR = wing span ^2 / wing area
- ARh = tail span ^2 / tail area
- Xnp = 0.25+ ((1+2/AR)/(1+2/ARh)).*(1-(4/(2+AR))).*Vh;
 - Assumption: Center of Lift of Wing and Tail is 1/4 of chord length
- Xcg = Xnp 0.12

Fuselage Design: Static Margin

Ideal CG is 20.6 in or 37% of the fuselage length and 33% of the mean chord length.

1 +

Bridget Andrews

Department of Mechanical Engineering

Concestion of the

....

Ca

...

- L_wing = L_tail It;
- IDEAL_CG = L_wing $c^*0.25 + c^*(Xcg)$

Validation for Static Margin

- $F_m1 = 6.550;$
- $F_m2 = 6.595;$
- $F_r = 2.145;$
- •
- L_m = 16.0144;
- $L_r = 49;$
- •
- F = [F_m1 F_m2 F_r];
- L = [L_m L_m L_r];
- M = F.*L;
- M_sum = sum(M);
- F_sum = sum(F);
- CG = M_sum/F_sum;

Validation for Static Margin

- Xnp = 0.25+ ((1+2/AR)/(1+2/ARh)).*(1-(4/(2+AR))).*Vh;
- Xcg = (CG L_wing +c*0.25)/c;
- SM = Xnp Xcg;
- fprintf('The current static margin of our plane is %.2f \n', SM);

50

Validation for Static Margin

- L_plus = 2.27;
- IdealCG = 20.6;
- F_plus = (M_sum IdealCG*F_sum)/(IdealCG L_plus);
- fprintf('The weight needed to attach to attach to the motor mount is $.2f \n', F_plus);$
- L_plus = 56;
- IdealCG = 20.6;
- F_plus = (M_sum IdealCG*F_sum)/(IdealCG L_plus);
- fprintf('The weight needed to attach to attach to the end of the fuselage is is %.2f \n', F_plus);

History of Competition

Upcoming Presenter's Name

52

2022 SAE Aero Design Competition

- Annual RC Plane Design
 Competition
- Location: Fort Worth, Texas
- When: May 20-22, 2022
- Class of Competition: Regular

53

History

Printed with regular PLA

Department of Mechanical Engineering

Mass balance problems Wing placement difficulty

Stability problems with canards Heavy landing gear Wing sagging

Goals and Requirements

Upcoming Presenter's Name

All Goals

- The plane is controllable via remote control operated by a single person
- The airplane's landing gear system is capable of controlling the steering of the airplane while on land the plane's propulsion system will be powered by 1 electric motor
- The cargo bay will secure two payloads that aren't subject to airstream
- The plane is constructed within the SAE competition guidelines
- The plane is primarily constructed of 3D-printed parts
- The plane can operate with and without payloads
- The payloads must load/unload in 1 minute
- The plane can takeoff within 100 feet in 120 seconds
- The plane can securely land within 400 feet

Customer Needs: Design Requirements

Customer Needs: Materials Requirements

Fiber reinforced plastic is prohibited

Rubber bands cannot secure payload

Batteries must be commercially available

Metal propellers are prohibited

A power limiter is required

Concept Generation

Upcoming Presenter's Name

59

Concept Generation (LOADING MECHANISM)

Front opening

Top opening

Rear opening

Concept Generation (LANDING GEAR)

Main Landing Gear Design

John Healy

62

Main Landing Gear Design 1

John Healy

Main Landing Gear Design 2

John Healy

64

Landing Gear Damage

The main gear had a hard landing on run 2 and suffered a slight bend of the 1/8" A1
Even with the bent strut, the plane proceeded with a 3rd run, both a smooth takeoff and landing

Concept Selection: Taildragger

- Weight: tailwheel smaller than nose wheel
- Pilot vision not applicable
- The risk of the plane going nose-over from hard breaking not applicable

Taildragger

Securement Methods

Upcoming Presenter's Name

Electronics

- Red Arming Plug secured with glue
- Other components secured inside fuselage with velcro

 Receiver
 Receiver

 Battery
 Arming Plug

 Propulsion
 Power

 Battery
 Speed

 Motor

John Healy

Velcro for Electronics

Verified through testing:

- Proficient adhesion to LW-PLA
- Hook-and-loop fasteners strong enough to hold battery

Final Design

Upcoming Presenter's Name

Fuselage Design : Length

- Ratio of Fuselage Length to Wing Chord Length = 4:1
- 14" chord length -> 56" fuselage length

Fuselage Design: General Sketching

- Inspired by Cirrus SR-22
- Parameterized by the side view as shown

Cirrus SR-22

Taildragger

Bridget Andrews

73

Structural Integrity

Bridget Andrews

Bow Ties

Innovations

- Screws now sit flush
- Tolerancing screw hole sizes
- Nylon Screws
- Labeling

2″

Bridget Andrews

75

Tail Interface

Project Selection

Upcoming Presenter's Name

Concept Selection

Center Load Placement Options:

- Front Load
- Back Load

Reason:

• To minimize payload's effect on CG

Alejandro Toro

Concept Selection

Taildragger Landing Gear

Options:

• Tricycle

Reason:

- Based on team's prediction of CG falling forward
- Low Wing Configuration

Low Wing, Dihedral Configuration

Reason:

- Center Load
 Placement
- Taildragger Landing Gear

Alejandro Toro

Concept Selection

Hatch-Loading Mechanism

Options:

- Front Open
- Back Open Reason:
- Center Load
 Placement
- Low Wing Configuration

Conventional Tail Reason: • Team 508

determination

Cirrus SR22 -Inspired Fuselage Reason:

- Streamline
- Conventional Tail
- Center Load
 Placement

Alejandro Toro

Project Timeline

Upcoming Presenter's Name

82

John Healy

83

John Healy

Timeline

508 Team Members

Upcoming Presenter's Name

Team 508 Introductions

David Jay Micha Manufacturing Engineer Contr

Michael Nalovic Controls Engineer

Sofia Rodriguez Aeronautics Engineer

Tristan Wahl Design Engineer

Alejandro Toro

87

