Hardware in Loop 1/10 Scale Automobile

Meet Team 503

Design Engineer

Structural Engineer

Hardware Engineer

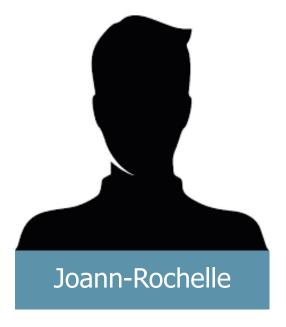
Software Engineer

Research/Test Engineer

Project Objective

The objective of this project is to minimize inertial forces during propulsion and support object location software to keep up with chosen targets with autonomous features for object detection.

End Goal



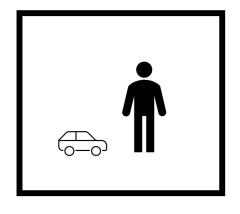
End Goal

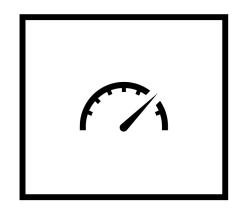
Sponsor & Advisor

Central Intelligence Agency

FAMU-FSU
College of Engineering

Stakeholders




Key Goals

Small Scale Vehicle

Autonomous

Maintain velocity

Minimize inertial losses

Markets

Primary

- Private and public government agencies
- CIA, FBI, etc.

Secondary

- Original Equipment Manufacturers (OEMs)
- Spyware enthusiasts
- Private search teams

Customer Needs

Question/Prompt	Customer Statement	Interpreted Need	Question/Prompt	Customer Statement	Interpreted Need
What is the estimated weight	Must be able to carry a	Focus primarily on a	Are the obstacles static or	Both	Design for static obstacles
of the design?	payload without impacting	lightweight design to	dynamic?		first, then make the design
	maneuverability.	compensate for the extra			more complex.
		weight that will be added.	Define failure to avoid an	The goal is to keep up with a	LiDAR specifications:
Is the design based on the	Yes, but improve on the	Follow F1tenth specifications	obstacle?	target being tracked so,	detection range = 10 m
F1tenth competition	design to gear towards the	but optimize being able to	obstacie!	,	
requirements?	CIA requirements.	keep up with a tracked target.		ideally, the design should not	scanning frequency = 40 Hz
What is the estimated cost of	F1tenth bill of materials	Work adjacent with team 504		crash.	angular resolution = 0.25°
the design?	approximates \$3500.	to combine budgets and	What speed is the vehicle	The average speed on a track	Determine an optimal speed
		determine which team is	operating at?	is 35mph while the vehicle	that does not sacrifice
		financially capable of buying		can go upwards of 70mph.	maneuverability.
		what items.		Cornering and	An even weight distribution
What is the general design of	min: 12x12x30cm	Design the obstacle out of		maneuverability affect speed.	can achieve an infinite critical
the obstacles?	max: 35x32x30cm	cardboard to be detectable by			velocity; however,
	LiDAR perceivable material	LiDAR, starting at one of the			acceleration will compromise
		size extremes.			weight distribution.

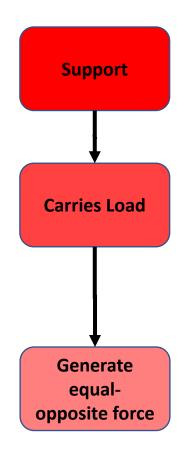
Assumptions

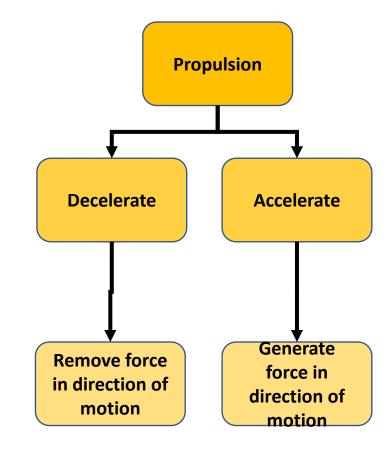
- Follows the requirements of the F1TENTH competition
- Operates on a Tarmac surface
- Detects and avoid obstacles
- Complete design in a year with monthly updates

Customer Needs

Question/Prompt	Customer Statement	Interpreted Need	
What is the estimated weight	Must be able to carry a	Focus primarily on a	
of the design?	payload without impacting	lightweight design to	
	maneuverability.	compensate for the extra	
		weight that will be added.	
Is the design based on the	Yes, but improve on the	Follow F1tenth specifications	
F1tenth competition	design to gear towards the	but optimize being able to	
requirements?	CIA requirements.	keep up with a tracked target.	
What is the estimated cost of	F1tenth bill of materials	Work adjacent with team 504	
the design?	approximates \$3500.	to combine budgets and	
		determine which team is	
		financially capable of buying	
		what items.	
What is the general design of	min: 12x12x30cm	Design the obstacle out of	
the obstacles?	max: 35x32x30cm	cardboard to be detectable by	
	LiDAR perceivable material	LiDAR, starting at one of the	
		size extremes.	

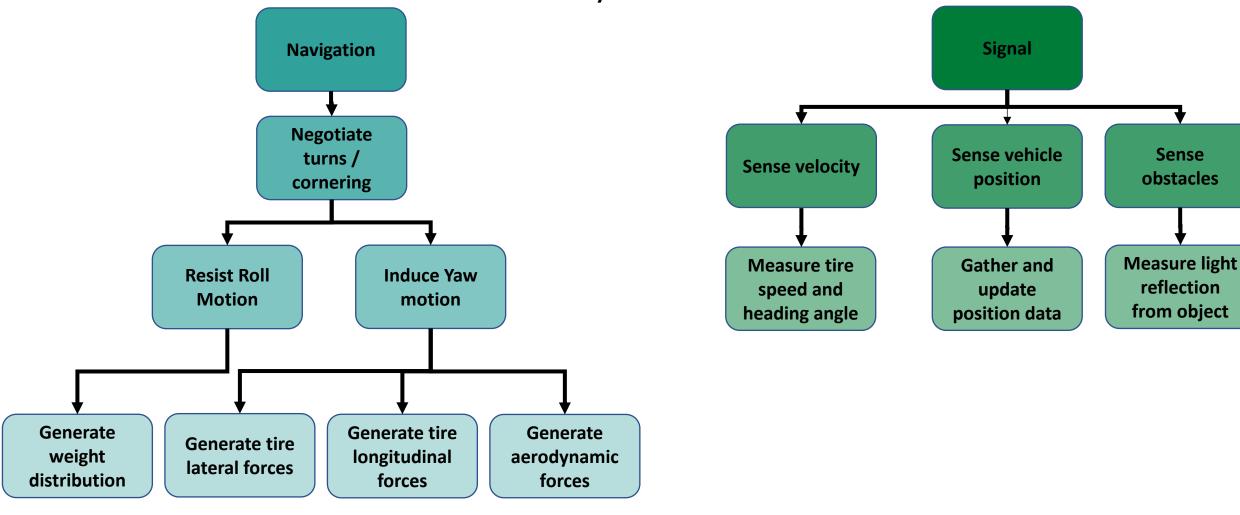
Question/Prompt	Customer Statement	Interpreted Need	
Are the obstacles static or	Both	Design for static obstacles	
dynamic?		first, then make the design	
		more complex.	
Define failure to avoid an	The goal is to keep up with a	LiDAR specifications:	
obstacle?	target being tracked so,	detection range = 10 m	
	ideally, the design should not	scanning frequency = 40 Hz	
	crash.	angular resolution = 0.25°	
What speed is the vehicle	The average speed on a track	Determine an optimal speed	
operating at?	is 35mph while the vehicle	that does not sacrifice	
	can go upwards of 70mph.	maneuverability.	
	Cornering and	An even weight distribution	
	maneuverability affect speed.	can achieve an infinite critical	
		velocity; however,	
		acceleration will compromise	
		weight distribution.	


Functional Decomposition


Cross Reference Table

	Propulsion	Support	Signal	Navigation	Total
Generate force in direction of motion	X				1
Remove force in direction of motion	X				1
Generate Equal & Opposite Force		Х			1
Generate Weight Distribution	Х	X		Χ	3
Generate tire lateral forces				X	1
Generate tire longitudinal forces				X	1
Generate aerodynamic forces	X			X	2
Measure light Reflection from object			X	X	2
Measure tire speed and heading angle data			X		1
Measure and update position data			X		1
Total	4	2	3	5	

Functional Decomposition


Hierarchy Flow Chart

Functional Decomposition

Hierarchy Flow Chart

TEAM 503

Richard Allen Richard3.allen@famu.edu

Chet Iwuagwu

Nicholas Muoio nlm19b@fsu.edu

Micah Hilliard mjh18e@fsu.edu

Kathleen Bodden kmb19b@fsu.edu

Customer Needs

Question/Prompt	Customer Statement	Interpreted Need	
What is the estimated weight	Must be able to carry a	Focus primarily on a	
of the design?	payload without impacting	lightweight design to	
	maneuverability.	compensate for the extra	
		weight that will be added.	
Is the design based on the	Yes, but improve on the	Follow F1tenth specification	
F1tenth competition	design to gear towards the	but optimize being able to	
requirements?	CIA requirements.	keep up with a tracked target.	
What is the estimated cost of	F1tenth bill of materials	Work adjacent with team 504	
the design?	approximates \$3500.	to combine budgets and	
		determine which team is	
		financially capable of buying	
		what items.	
What is the general design of	min: 12x12x30cm	Design the obstacle out of	
the obstacles?	max: 35x32x30cm	cardboard to be detectable by	
	LiDAR perceivable material	LiDAR, starting at one of the	
		size extremes.	

Question/Prompt	Customer Statement	Interpreted Need
Are the obstacles static or	Both	Design for static obstacles
dynamic?		first, then make the design
		more complex.
Define failure to avoid an	The goal is to keep up with a	LiDAR specifications:
obstacle?	target being tracked so,	detection range = 10 m
	ideally, the design should not	scanning frequency = 40 Hz
	crash.	angular resolution = 0.25°
What speed is the vehicle	The average speed on a track	Determine an optimal speed
operating at?	is 35mph while the vehicle	that does not sacrifice
	can go upwards of 70mph.	maneuverability.
	Cornering and	An even weight distribution
	maneuverability affect speed.	can achieve an infinite critical
		velocity; however,
		acceleration will compromise
		weight distribution.

F1Tenth Requirements

Restricted Class allows only cars that meet the following constraints:

- 1. The vehicle is constructed according to the official bill of materials. The teams are allowed to use components of similar or lower specifications.
- 2. Each vehicle will be inspected as a part of qualification whether it meets the criteria. In case the criteria are not met, the vehicle is moved to the Open Class.
- 3. F1TENTH Competition is a battle of algorithms. Any hardware that should turn the odds in your favor is not allowed.
- 4. *Chassis*: Any chassis listed as 1:10 scale car is allowed. Preferably 1:10 Traxxas (e.g., TRA74054, TRA6804R, TRA68086), but generally, any chassis with similar dimensions is allowed. Both 4WD and 2WD are permitted.
- 5. *Main Computation Unit*: **Nvidia Jetson Xavier NX**, Equivalents to the Nvidia Jetson NX (e.g. Nvidia Jetson TX2, Nvidia Jetson Nano), or anything of equal or lower GPU and CPU specification is allowed. Examples of possible computation units could be: Raspberry Pi, Arduino, Beaglebone.
- 6. LiDAR: Hokuyo UST-10LX, its equivalent, or anything of lower specifications is allowed. The main observed characteristics are: detection range (10 m), scanning frequency (40 Hz), and angular resolution (0.25°).
- 7. Camera: Both monocamera (e.g. Logitech C270, Logitech C920, Raspberry Pi Camera Module V2, Arducam) and stereokameras (e.g. Intel Realsense, ZED) are allowed.
- 8. *Engine*: Only brushless DC motors are allowed. The **Velineon 3500 kV**, its equivalent, or anything of lower specifications regarding power and torque are allowed.
- 9. *Other sensors*: Other sensors (IMUs, encoders, custom electronic speed controllers) are not restricted. Indoor GPS sensors (e.g. Marvelmind) are not allowed. In addition, in the spirit of the competition, components with significant internal computation power are prohibited.

Nicholas