Hardware in Loop 1/10 Scale Automobile

David Gordon | Micah Hilliard | Kathleen Bodden Richard Allen | Chet Iwuagwu | Nicholas Muoio |


Meet Team 503

Richard Allen

Design Engineer

Structural Engineer

Nicholas Muoio Controls Engineer

David Gordon

Chet Iwuagwu

Software Engineer

Hardware Engineer

Kathleen Bodden Research/Test Engineer

Department of Mechanical Engineering

Project Objective

The objective of this project is to autonomously minimize inertial forces during propulsion and integrate with a concealed tracking device.

AME

Department of Mechanical Engineering

...

CoE

Project Objective

The objective of this project is to autonomously minimize inertial forces during propulsion and integrate with a concealed tracking device.

AME

4

Department of Mechanical Engineering

...

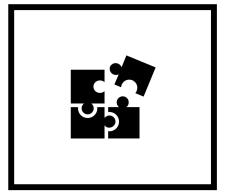
CoE

Stakeholders

Central Intelligence Agency

Shayne McConomy FAMU-FSU College of Engineering

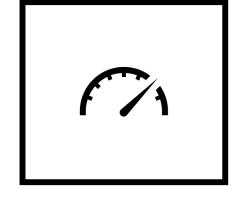
Camilo Ordoñez FAMU-FSU College of Engineering



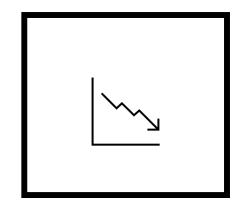
FAMU-FSU College of Engineering

Department of Mechanical Engineering

Key Goals

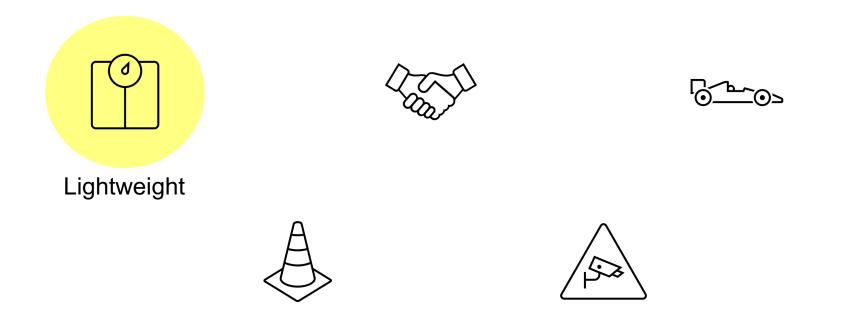


Integrated with Team 504

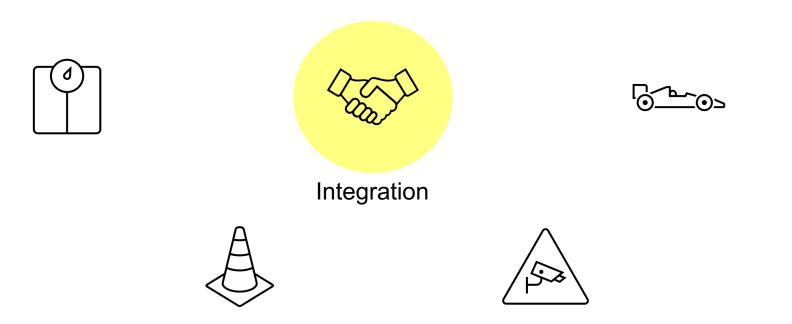

Autonomous

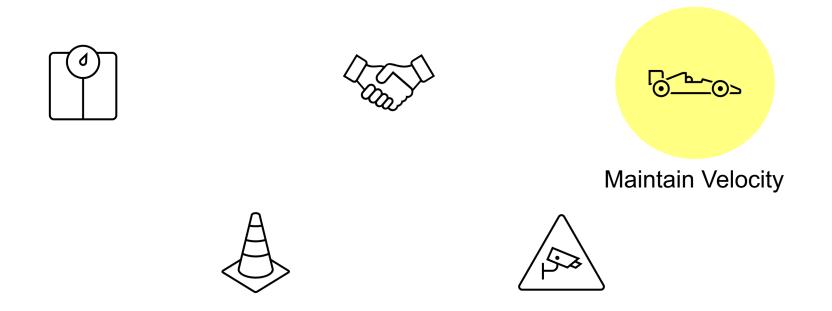
ηŊ

վլի

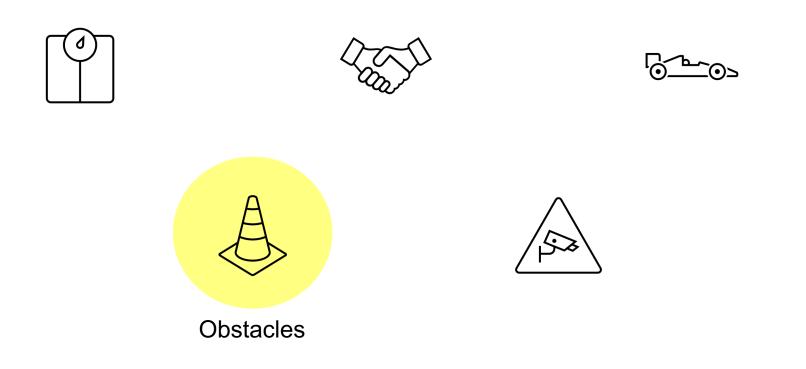


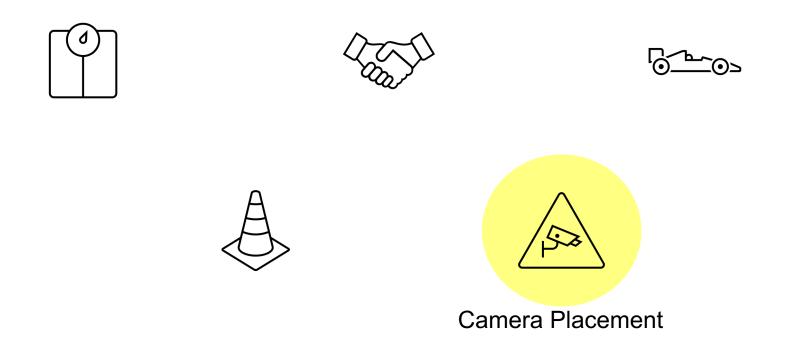
Maintain velocity


Minimize inertial losses

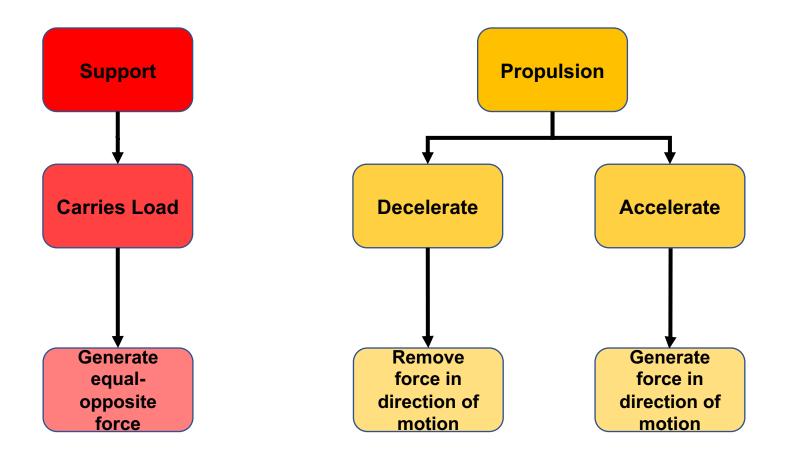


Kathleen Bodden

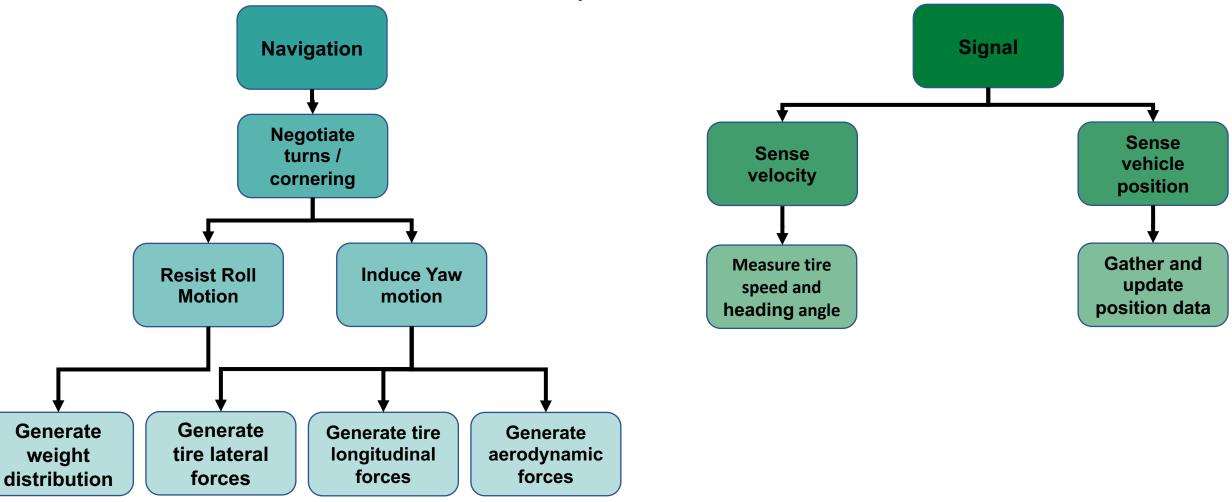



Kathleen Bodden

Kathleen Bodden



Kathleen Bodden


Functional Decomposition Hierarchy Flow Chart

Functional Decomposition

Hierarchy Flow Chart

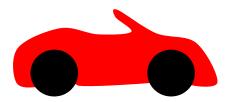
David Gordon

David Gordon

David Gordon

David Gordon

Concept Generation


Morphological Chart

	IDEA 1	IDEA 2	IDEA 3
STEERING	Ackermann	Differential	Omnidirectional
SOFTWARE	ROS 1	ROS 2	-
PATHING	Model Predictive Control + PID	Sample Based Model Predictive Optimization	Genta
BRAKING	Resistive	Regenerative	Reverse

Morphological Chart

Brainstorming

Biomimicry

Concept Generation

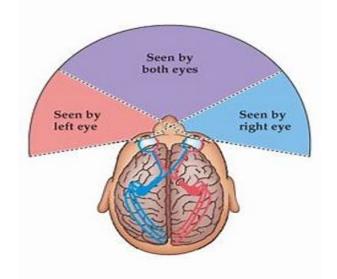
- 1. Sensors attached to balloon/kite that floats above the car
- 2. Reinforcement learning for object avoidance
- 3. Lengthen wheelbase to increase efficiency (a to CG length)

Morphological Chart

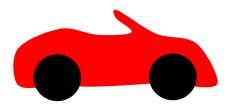
Brainstorming

Biomimicry

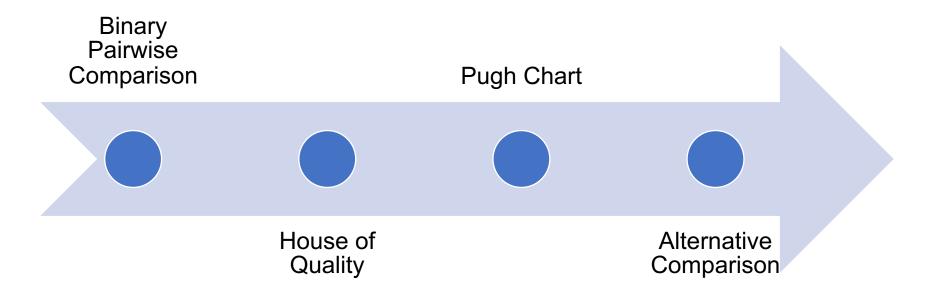
Department of Mechanical Engineering


Kathleen Bodden

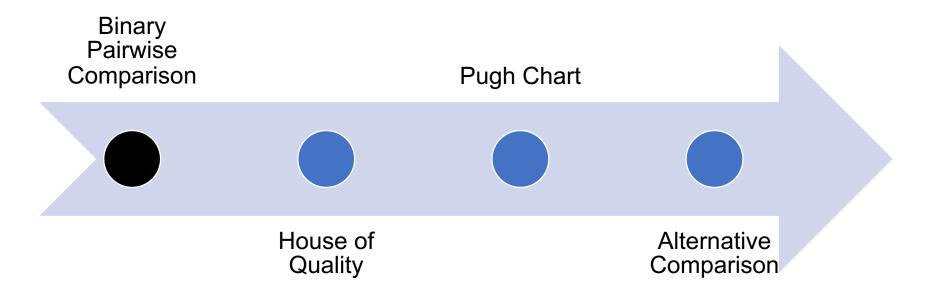
Concept Generation


Morphological Chart

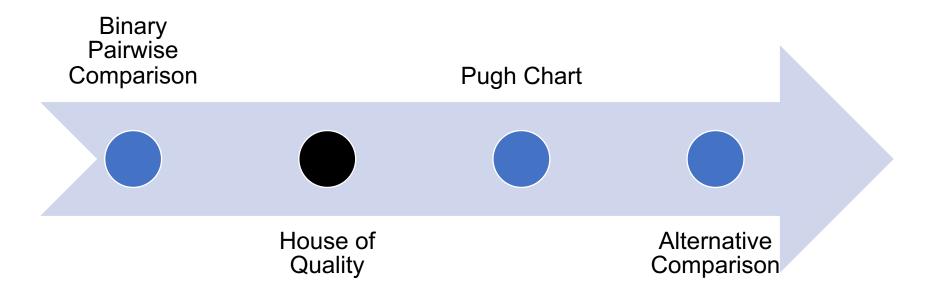
Brainstorming



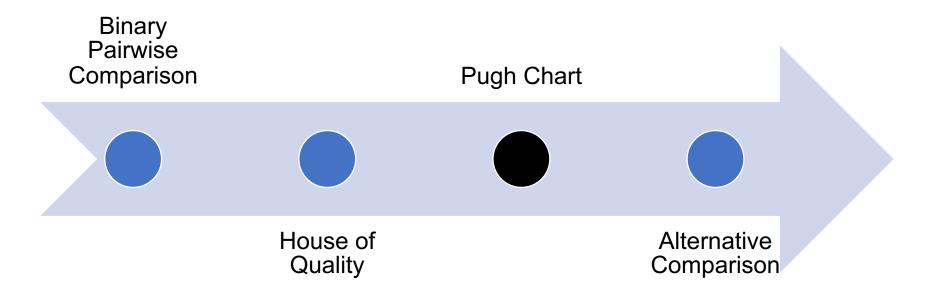
Biomimicry



Department of Mechanical Engineering

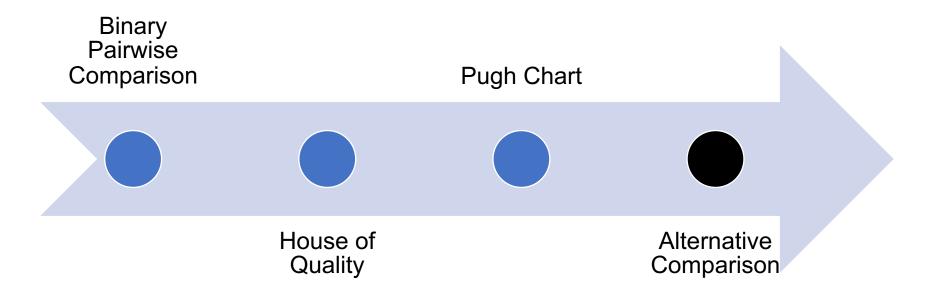


Micah Hilliard



House of Quality

		Engineering Characteristics												
Improvement D	irection	\uparrow	\uparrow	\checkmark	\downarrow	\checkmark	\uparrow	\uparrow	\downarrow	\uparrow			\uparrow	\checkmark
	Units	s	m	kg	cm	PPR	Hz	rad/s	rad/s	m/s	J	Iterations	m/s	m
Customer Requirements	Importance Weight Factor	Generates Force	Removes Force	Carries Payload	Fits Payload	Measure tire speed	Gather & Update position data	Resist roll motion	Induce yaw rate	Top speed	Battery size	Simulation runs	Maintained velocity	Turning radius
1) Optimized Pathing	3	3	3			3	9		3	3	9	9	3	9
2) Point A to B in 5 minutes	2	9	3	3		9	9		3	9	9	3	3	3
3) Autonomously Controlled	4	3	3			9	3	3	9	3	1	9	9	3
4) Reduce inertial losses	7	9	9	3	3	9	3		3	9	9	9	9	9
5) Carries Payload	1	9	9	9	9			3	1		3		9	1
6) Handles Road Grade	0	3	3	1			3	3				3	9	1
7) Simulated Environment	8	3	3			9	3		9	3		9	9	3
8) Maintaining optimal velocity	5	9	9	3		9	9	1	3	9	9	9	9	9
9) Fully Integrated with Team 504s														
Project	6	3	3	0	0	0	9	0	3	0	3	3	9	3
Raw Score	2213	198	186	51	30	243	201	20	178	171	178	267	294	196
Relative W	eight %	8.947	8.405	2.305	1.356	10.981	9.083	0.904	8.043	7.727	8.043	12.065	13.285	8.857
Ran	k Order	5	7	10	11	3	4	12	8	9	8	2	1	6


Pugh Chart

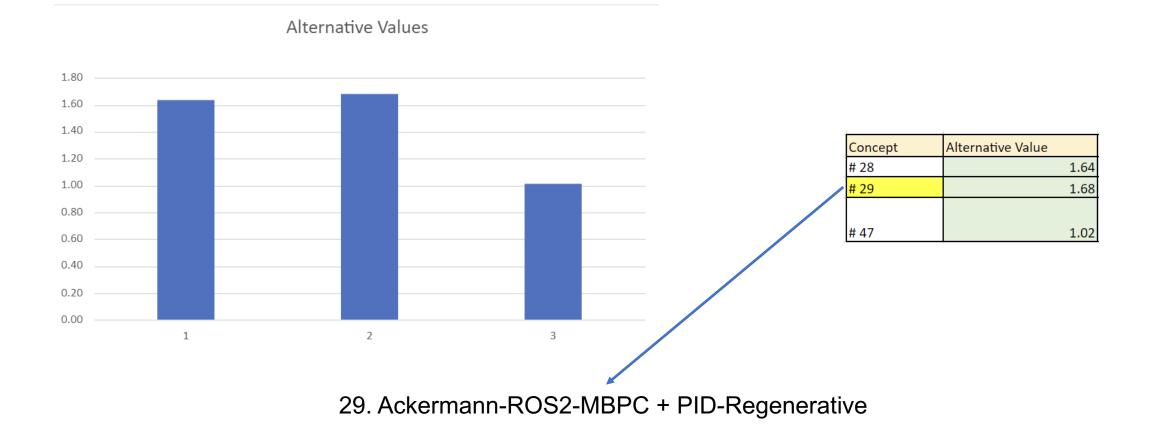
86. Completely even weight distribution

- **28.** Ackermann-ROS2-MBPC + PID-Resistive
- **29.** Ackermann-ROS2-MBPC + PID-Regenerative
- **47.** Omnidirectional -ROS2-MBPC + PID-Regenerative

			Concepts	
Selection Criteria	86	28	29	47
Generates Force		S	+	+
Removes Force		S	+	+
Carries Payload		S	S	S
Fits Payload		S	S	S
Measure Tire Speed		s	S	-
Gather and Update Position Data	Datum	s	S	-
Resist Roll Motion	Ö	S	S	S
Induce Yaw Rate		+	+	-
Top Speed		S	-	-
Battery Size		S	+	+
Simulations		+	+	+
Maintain Velocity		+	+	-
Turning Radius		S	S	-
	# of Plus(+)	3	6	4
	# of Minus(-)	0	0	6

Micah Hilliard

Alternative Comparisons


	Maintained Velocity						
Concepts	# 28	# 28 # 29 # 47 Avg					
# 28	1	1	5	2.33			
# 29	1	1	5	2.33			
# 47	0.2	0.2	1	0.47			
Total	2.20	2.20	11				

	Simulation Runs						
Concepts	# 28	# 28 # 29 # 47 Avg					
# 28	1	1	1	1			
# 29	1	1	1	1			
# 47	1	1	1	1			
Total	3	3	3				

	Measure Tire Speed						
Concepts	# 28	# 28 # 29 # 47 Avg					
# 28	1	1	7	3			
# 29	1	1	7	3			
# 47	0.14	0.14	1	0.43			
Total	2.14	2.14	15				

Alternative Comparisons

Micah Hilliard

Future Work

- Simulations (MATLAB, Gazebo, ROS, Adams)
- Estimate Budget Expenses
- VDR3 Poster Board
- Prepare for in-person sponsor meeting

TEAM 503

Chet Iwuagwu Ili13@fsu.edu

Richard Allen

Richard3.allen@famu.edu

Nicholas Muoio nlm19b@fsu.edu

Hardware in Loop 1/10 Scale Automobile

Micah Hilliard mjh18e@fsu.edu

Kathleen Bodden kmb19b@fsu.edu

Markets

Primary

- Private and public government agencies
- CIA, FBI, etc.

Secondary

- Original Equipment Manufacturers (OEMs)
- Spyware enthusiasts
- Private search teams

Question/Prompt	Customer Statement	Interpreted Need	Question/Prompt	Customer Statement	Interpreted Need
What is the estimated weight	Must be able to carry a	Focus primarily on a	Are the obstacles static or	Both	Design for static obstacles
of the design?	payload without impacting	lightweight design to	dynamic?		first, then make the design
	maneuverability.	compensate for the extra			more complex.
		weight that will be added.	Define failure to avoid an	The goal is to keep up with a	LiDAR specifications:
Is the design based on the	Yes, but improve on the	Follow F1tenth specifications	obstacle?	target being tracked so,	detection range = 10 m
F1tenth competition	design to gear towards the	but optimize being able to		ideally, the design should not	scanning frequency = 40 Hz
requirements?	CIA requirements.	keep up with a tracked target.		crash.	angular resolution = 0.25°
What is the estimated cost of the design?	F1tenth bill of materials approximates \$3500.	Work adjacent with team 504 to combine budgets and determine which team is financially capable of buying what items.	What speed is the vehicle operating at?	The average speed on a track is 35mph while the vehicle can go upwards of 70mph. Cornering and	Determine an optimal speed that does not sacrifice maneuverability. An even weight distribution
What is the general design of	min: 12x12x30cm	Design the obstacle out of		maneuverability affect speed.	can achieve an infinite critical
the obstacles?	max: 35x32x30cm	cardboard to be detectable by			velocity; however,
	LiDAR perceivable material	LiDAR, starting at one of the			acceleration will compromise
		size extremes.			weight distribution.

Functional Decomposition Cross Reference Table

	Propulsion	Support	Signal	Navigation	Total
Generate force in direction of motion	х				1
Remove force in direction of motion	х				1
Generate Equal & Opposite Force		х			1
Generate Weight Distribution	Х	Х		Х	3
Generate tire lateral forces				Х	1
Generate tire longitudinal forces				х	1
Generate aerodynamic forces	х			х	2
Measure light Reflection from object			Х	Х	2
Measure tire speed and heading angle data			Х		1
Measure and update position data			х		1
Total	4	2	3	5	

F1Tenth Requirements

Restricted Class allows only cars that meet the following constraints:

- 1. The vehicle is constructed according to the official <u>bill of materials</u>. The teams are allowed to use components of similar or lower specifications.
- 2. Each vehicle will be inspected as a part of qualification whether it meets the criteria. In case the criteria are not met, the vehicle is moved to the Open Class.
- 3. F1TENTH Competition is a battle of algorithms. Any hardware that should turn the odds in your favor is not allowed.
- 4. *Chassis*: Any chassis listed as 1:10 *scale* car is allowed. Preferably **1:10 Traxxas** (e.g., <u>TRA74054</u>, <u>TRA6804R</u>, <u>TRA68086</u>), but generally, any chassis with similar dimensions is allowed. Both 4WD and 2WD are permitted.
- 5. *Main Computation Unit*: **Nvidia Jetson Xavier NX**, Equivalents to the Nvidia Jetson NX (e.g. Nvidia Jetson TX2, Nvidia Jetson Nano), or anything of equal or lower GPU and CPU specification is allowed. Examples of possible computation units could be: Raspberry Pi, Arduino, Beaglebone.
- 6. *LiDAR*: Hokuyo UST-10LX, its equivalent, or anything of lower specifications is allowed. The main observed characteristics are: detection range (10 m), scanning frequency (40 Hz), and angular resolution (0.25°).
- 7. *Camera*: Both *monocamera* (e.g. Logitech C270, Logitech C920, Raspberry Pi Camera Module V2, Arducam) and *stereokameras* (e.g. Intel Realsense, ZED) are allowed.
- 8. *Engine*: Only brushless DC motors are allowed. The Velineon 3500 kV, its equivalent, or anything of lower specifications regarding power and torque are allowed.
- 9. Other sensors: Other sensors (IMUs, encoders, custom electronic speed controllers) are not restricted. Indoor GPS sensors (e.g. Marvelmind) are not allowed. In addition, in the spirit of the competition, components with significant internal computation power are prohibited.

Nicholas

Department of Mechanical Engineering