# Team 506: Corning Plugger Pallet Short Part Stabilization

Pawel J. Grum | Robert C. Kosmas | Taylor M. Larson | Segundo A. Sanchez | Jared T. White

### **Team Members**



Segundo Sanchez



# **Sponsors and Advisors**



Segundo Sanchez





Segundo Sanchez



### **Project Objective**

The objective of this project is to produce a stabilization system to protect ceramics on Corning's conveyor while reducing the required manual labor.

Segundo Sanchez



# **Project Background**





Segundo Sanchez











Segundo Sanchez







Segundo Sanchez

FAMU-FSU Engineering

# **Critical Targets**



Segundo Sanchez



# **Critical Targets**



Segundo Sanchez



# **Top 3 Concepts Generated**



Segundo Sanchez



### **Concept Selection**



Segundo Sanchez



# **Final Selection**

### **Self-Nesting T**

- Similar to working design
- Trigger activated and collapsible
- Uses mechanism on conveyor to activate



Segundo Sanchez





Segundo Sanchez





Jared White



### **Vertical Retraction and Expansion**



Jared White



### **Vertical Retraction**



Jared White



### **Vertical Retraction and Expansion**



Jared White



### **Vertical Expansion**





Jared White





Jared White

# **Actuation Mechanism**

### **Rack and Pinion Slider**

- "Z" shaped rack allows simultaneous rotation
- Slides in a slot on the outer wall
- Raised outer wall allows for particle flow



Jared White



# **Actuation Mechanism**

### Lever Arm and Slider Joint

- The rack will act as a slider
- Slotted joint connection will allow for rotation of the switch

Jared White



ANAF

# **Actuation Mechanism**

#### Lever Arm and Slider Joint

- The rack will act as a slider
- Slotted joint connection will allow for rotation of the switch







### **Final Design**



Jared White





Jared White







Pawel Grum



Pawel Grum







![](_page_28_Figure_0.jpeg)

Pawel Grum

![](_page_28_Picture_2.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_31_Picture_2.jpeg)

### **Connection Map** Flow Chart for Electronics

![](_page_32_Figure_1.jpeg)

Pawel Grum

![](_page_32_Picture_3.jpeg)

# **Corning RFID Integration**

![](_page_33_Figure_1.jpeg)

![](_page_33_Picture_4.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_1.jpeg)

Pawel Grum

![](_page_34_Picture_3.jpeg)

![](_page_35_Figure_0.jpeg)

Pawel Grum

![](_page_35_Picture_2.jpeg)

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_2.jpeg)

#### **Base and Linkages**

- Aluminum 6061
  <u>Hardware</u>
- Alloy Steel Shoulder Bolts
- Alloy Steel Screws
- Aluminum-Nylon Lock Nuts

![](_page_38_Picture_6.jpeg)

![](_page_38_Picture_8.jpeg)

#### **Base and Linkages**

- Aluminum 6061
  Hardware
- Alloy Steel Shoulder Bolts
- Alloy Steel Screws
- Aluminum-Nylon Lock Nuts

#### **Washers and Spacers**

• UHMW Polyethylene

![](_page_39_Picture_8.jpeg)

![](_page_39_Picture_10.jpeg)

#### **Base and Linkages**

- Aluminum 6061
  <u>Hardware</u>
- Alloy Steel Shoulder Bolts
- Alloy Steel Screws
- Aluminum-Nylon Lock Nuts
  <u>Washers and Spacers</u>
- UHMW Polyethylene
  <u>Mounts and Slapstick</u>
- Aluminum 6061

![](_page_40_Figure_8.jpeg)

![](_page_40_Picture_10.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_42_Picture_2.jpeg)

![](_page_43_Figure_0.jpeg)

Taylor Larson

![](_page_43_Picture_2.jpeg)

![](_page_44_Picture_0.jpeg)

#### **Retraction and Expansion**

![](_page_44_Figure_2.jpeg)

**Robert Kosmas** 

![](_page_45_Picture_0.jpeg)

#### **Retraction and Expansion**

![](_page_45_Figure_2.jpeg)

![](_page_45_Picture_3.jpeg)

**Robert Kosmas** 

![](_page_45_Picture_5.jpeg)

# Validation

#### **Actuation Time**

![](_page_46_Figure_2.jpeg)

![](_page_46_Picture_3.jpeg)

Robert Kosmas

![](_page_46_Picture_5.jpeg)

# Validation

Load

![](_page_47_Figure_2.jpeg)

![](_page_47_Figure_3.jpeg)

Robert Kosmas

![](_page_47_Picture_5.jpeg)

# Validation

#### **Limit Manual Labor**

![](_page_48_Figure_2.jpeg)

![](_page_48_Picture_3.jpeg)

Robert Kosmas

![](_page_48_Picture_5.jpeg)

# **Additional Testing**

#### **Vibration Testing**

![](_page_49_Picture_2.jpeg)

![](_page_49_Figure_3.jpeg)

Robert Kosmas

![](_page_49_Picture_5.jpeg)

![](_page_50_Picture_0.jpeg)

#### **Impact Testing**

![](_page_50_Figure_2.jpeg)

Robert Kosmas

### Improvements

![](_page_51_Picture_1.jpeg)

![](_page_51_Picture_3.jpeg)

### **Lessons Learned**

#### Criticism often means you are off to a good start.

Don't reinvent the wheel. Keep it simple.

It's okay if the prototype is not perfect the first time. That's why it's called a "prototype".

![](_page_52_Picture_5.jpeg)

![](_page_53_Picture_0.jpeg)

![](_page_53_Picture_2.jpeg)

![](_page_54_Figure_0.jpeg)

The Self-Nesting T was designed to protect ceramics traveling along a conveyor line, while also limiting the required interactions from plant employees.

![](_page_54_Picture_4.jpeg)

![](_page_55_Figure_0.jpeg)

The Self-Nesting T was designed to protect ceramics traveling along a conveyor line, while also limiting the required interactions from plant employees.

![](_page_55_Picture_4.jpeg)

![](_page_56_Picture_0.jpeg)

![](_page_56_Figure_1.jpeg)

Multiple concepts were generated but the Self-Nesting T was the final selection. It was also highly favored due to it being modeled after the T design that's proven to minimizes damage.

![](_page_56_Picture_4.jpeg)

![](_page_57_Picture_0.jpeg)

![](_page_57_Figure_1.jpeg)

The designs critical targets have been validated. This allows the team to know that the projects goals have been accomplished.

![](_page_57_Picture_4.jpeg)

![](_page_58_Picture_0.jpeg)

Corning will be able to implement our design into the current manufacturing plant system. Allowing for their ceramics to be protected, while also reducing the required manual labor by being actuated mechanically.

![](_page_59_Picture_0.jpeg)

Corning will be able to implement our design into the current manufacturing plant system. Allowing for their ceramics to be protected, while also reducing the required manual labor by being actuated mechanically.

![](_page_59_Picture_4.jpeg)

![](_page_60_Picture_0.jpeg)

![](_page_60_Figure_1.jpeg)

Corning will be able to implement our design into the current manufacturing plant system. Allowing for their ceramics to be protected, while also reducing the required manual labor by being actuated mechanically.

# Thank you!

Pawel J. Grum |

pjg17@fsu.edu

![](_page_61_Picture_3.jpeg)

rck19a@fsu.edu

![](_page_61_Picture_5.jpeg)

tml18bg@fsu.edu

![](_page_61_Picture_7.jpeg)

sas19x@fsu.edu

![](_page_61_Picture_9.jpeg)

Robert C. Kosmas | Taylor M. Larson | Segundo A. Sanchez | Jared T. White

jtw18c@fsu.edu

![](_page_61_Picture_12.jpeg)