MICROGRAVITY MACHINE Design Review 6

Team 511

Propulsion Engineer

Recovery Engineer

Test & Systems Engineer

Engineer

John Tietsworth

Controls Engineer

Samuel Duval

2

Sponsor and Advisor

FAMU-FSU College of Engineering

Florida Space Grant Consortium

Dr. Shayne McConomy

FAMU-FSU College of Engineering

Samuel Duval

3

Project Objective

The objective of the project is to design a reproduceable system that can be dropped, achieve microgravity during its descent, and be safely recovered for reuse.

Samuel Duval

4

Samuel Duval

5

Achieving Freefall

Samuel Duval

Key Goals

Microgravity

Recoverable

Meet weight requirements

Reproduceable

Pedro Siman

7

Competition Day

8

Competition Day

Metric	Target
Time to Detect Disconnection	0.1s
Degrees of Freedom	1
Acceleration	9.81 $\frac{m}{s^2}$
Final Velocity	$5\frac{m}{c}$

$$\vec{a} = 9.81 \frac{m}{s^2}$$

Pedro Siman

Competition *** Day

Metric	Target
Time to Detect Disconnection	0.1s
Degrees of Freedom	1
Acceleration	9.81 $\frac{m}{s^2}$
Final Velocity	$5\frac{m}{s}$

Pedro Siman

10

Competition *** Day

Pedro Siman

11

Concept Generation

Pedro Siman

12

Concept Generation

Pedro Siman

13

Collin Gainer

Collin Gainer

Collin Gainer

Collin Gainer

Air is pulled in by the fan and expelled from nozzles ayload Moto

Collin Gainer

Collin Gainer

Collin Gainer

Collin Gainer

Front View

Collin Gainer

Side View

5.5 ft (1.68 m)

Collin Gainer

33

Side View

Collin Gainer

Department of Mechanical Engineering

34

36
Uncontrolled Simulation

1st portion: Vehicle falls under gravity with drag acting on it.

2nd portion: Vehicle slows after parachute is released

 $V \approx 4$ m/s 0.5 s after the parachute is opened

John Tietsworth

Uncontrolled Simulation

1st portion: Vehicle falls under gravity with drag acting on it.

2nd portion: Vehicle slows after parachute is released

 $V \approx 4$ m/s 0.5 s after the parachute is opened

100	-50	0 (m)	50	
100				
120				
140				
160				
光 ₁₈₀ -				
14 200 ·				
Ê 220				
240				
260				
280				
300				

John Tietsworth

Controlled Simulation (PID)

John Tietsworth

40

Chosen Microcontroller

FireBeetle ESP32

- 240 MHz
- Dual core processing

Compared to Arduino Mega

15x faster computation

Samuel Duval

Samuel Duval

Samuel Duval

Thrust Testing - BUILD

Samuel Duval

Thrust Testing - Adaptation

Samuel Duval

Max Drag	15.4 N	
Max Fan Thrust	28 N	
Duct Iteration	Maximum Trust	

John Tietsworth

46

Max Drag	15.4 N	
Max Fan Thrust	28 N	
Duct Iteration	Maximum Trust	
1	7 N	

John Tietsworth

Max Drag	15.4 N
Max Fan Thrust	28 N
Duct Iteration	Maximum Trust
1	7 N
2	8.2 N

John Tietsworth

Max Drag	15.4 N	
Max Fan Thrust	28 N	
Duct Iteration	Maximum Trust	
1	7 N	
2	8.2 N	
3	8.6 N	

49

Max Drag	15.4 N
Max Fan Thrust	28 N
Duct Iteration	Maximum Trust
1	7 N
2	8.2 N
3	8.6 N
4	11 N

John Tietsworth

50

Max Drag	15.4 N
Max Fan Thrust	28 N
Duct Iteration	Maximum Trust
1	7 N
2	8.2 N
3	8.6 N
4	11 N
5	18.5 N

John Tietsworth

PWM Signal vs. Thrust

John Tietsworth

PWM Signal vs. Thrust

John Tietsworth

Thomas Lenz

Servo Testing Results

Thomas Lenz

Department of Mechanical Engineering

Testing Plans

Thomas Lenz

Parachute Testing Results

Thomas Lenz

57

Thomas Lenz

Payload Testing Results

Bearings and Payload Caps Aligned

Thomas Lenz

Payload Testing Results

Thomas Lenz

60

Payload Testing Results

Thomas Lenz

61

Testing Plans

- 1. Thrust curve for the EDF
- 2. Servo stall torque
- 3. Parachute release
- 4. Payload movement
- 5. Control system

Thomas Lenz

Department of Mechanical Engineering

Future Work

Thomas Lenz

Thomas Lenz

Thomas Lenz

Thomas Lenz

67

Thomas Lenz

68

Thomas Lenz

Thomas Lenz

Double check test conditions before running test

Acquire parts ASAP

Double check tolerances before printing

Expect setbacks

Test parts when first acquired

Research parts before purchasing

Thomas Lenz

References

Images:

https://thekidshouldseethis.com/post/feathered-fighter-jets-peregrine-falcons

https://www.esa.int/ESA_Multimedia/Images/2007/11/Zero-G_Airbus_A300_for_parabolic_flights

https://en.wikipedia.org/wiki/Sounding_rocket

https://www.esa.int/ESA_Multimedia/Images/2017/03/ZARM_s_Drop_Tower_in_Bremen

https://www.hitec.uni-hannover.de/en/large-scale-equipment/einstein-elevator/

https://www.hitec.uni-hannover.de/en/large-scale-equipment/einstein-elevator/events-and-media/

Further Readings:

https://www.gozerog.com/

https://www.nasa.gov/mission_pages/sounding-rockets/missions/index.html https://www.zarm.uni-bremen.de/en/drop-tower/general-information.html https://www.hitec.uni-hannover.de/en/large-scale-equipment/einstein-elevator https://www.youtube.com/watch?v=4aCMDQsx740&ab_channel=TomScott

Thomas Lenz

