

## **Project Objective:**

Build a measurement device that measures manual inputs on a catheter and evaluates those against a 1:1 promise.

# **Key Points**

- Stepper motor is initiated to begin manual rotation of catheter.
- Camera is placed against the "heart" box" to capture distal end movement.
- > Captured video is analyzed using image processing and related to the stepper motor action.

## **Targets**

#### **Detect Rotation**

> Detect the distal end output rotation and puller wire orientation with an accuracy of 0.5 degrees.

### Reproducibility

Can be replicated at the Johnson & Johnson engineering facilities.

## **Stabilization**

➢ Made of plastic to ensure a firm foundation to test within.

# FAMU-FSU Catheter Rotation Measuring Device Engineering Vivian Bernard | Sarah Churchwell | Lauren Kazzah | Katelyn Konnody | Zoch Locate

Samuel McMillan | Diana Shaughnessy | Hunter Walsh

## **Heart Box**

> Manufactured with acrylic and sealed with aquarium grade sealant.

Simulates the "heart" and allows the distal end to suspend in fluid.

## **Image Processing**

Image captures of the tip of catheter rotation and is simulated in MATLAB. The code tracks the angle which the distal end is experiencing at a moment in time.



## **Stepper Motor**

### **Knob Mount**

Stepper motor fastens to a mold that is secured around of the handle of the catheter that supplies movement to the distal end output.

## Operation

 $\blacktriangleright$  A 12V power supply and the student's laptop operate the Arduino and stepper motor.

