

Senior Design Team 103 Biosense Webster Cathete

Diana Shaughnessy & Hunter Walsh

Hunter Walsh

Team Introductions

Vivian Bernard Biomedical Engineer

Sarah Churchwell Mechanical Design Engineer

Zach Leachman Biomedical Engineer Lauren Kazzab Biomedical Engineer

Samuel McMillan Electrical Engineer

Katelyn Kennedy Biomedical Engineer

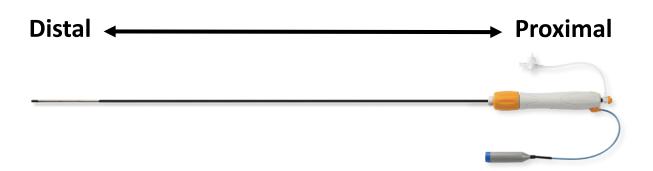
Diana Shaughnessy Mechanical Design Engineer

Hunter Walsh Electrical Engineer

Sponsors and Advisors

Development Mentor Charles Lindholm Director of R&D

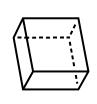
Engineering Mentor Amar Patel R&D Engineer II


<u>Academic Advisor</u> Stephen Arce, Ph.D. *BME Professor*

Hunter Walsh

Objective

Build a measurement device that measures manual inputs and evaluates those inputs against a 1:1 promise.



Hunter Walsh

4

Develop the testing arena that will be utilized for all proceeding manners

Determine the torsional deflection using the developed measuring system

Read the signals of angular deflection with a +/- 0.5° of freedom

Hunter Walsh

Primary & Secondary Markets

Primary			Secondary
Cardiac Surgeons	Cardiology Researchers	Cardiology Centers	Biotech Resell Companies

Assumptions

Demographic that will benefit from the success of the project will be those with heart issues (ex. Atrial Fibrillation)

Prototype will be design and in-production by the end of Fall 2023

Measuring Device will only be designed to be applied to the Biosense Webster Catheters

Hunter Walsh

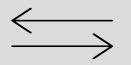
Stakeholders


Engineering Mentor Shayne McConomy, Ph.D. *ME Senior Design Coordinator* Engineering Mentor Jerris Hooker, Ph.D. *EE Senior Design Coordinator* Development Mentor Charles Lindholm Director of R&D

Sponsor Company Johnson & Johnson Family of Companies

Hunter Walsh

Customer Needs


Compatibility allows for a more concise and efficient way to measure across catheters

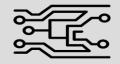
1:1 Rotational Promise

Ensure that rotation at proximal end matches output at distal end

Measures Translation

Translation is just as crucial to the measurements as rotation

Simulated Environment



Allows for more real-life augmented prototyping and testing

Customer Needs

Non-invasive Electronics

Electronics will not interfere with the user's ability to use the catheter

Collect & Analyze Data

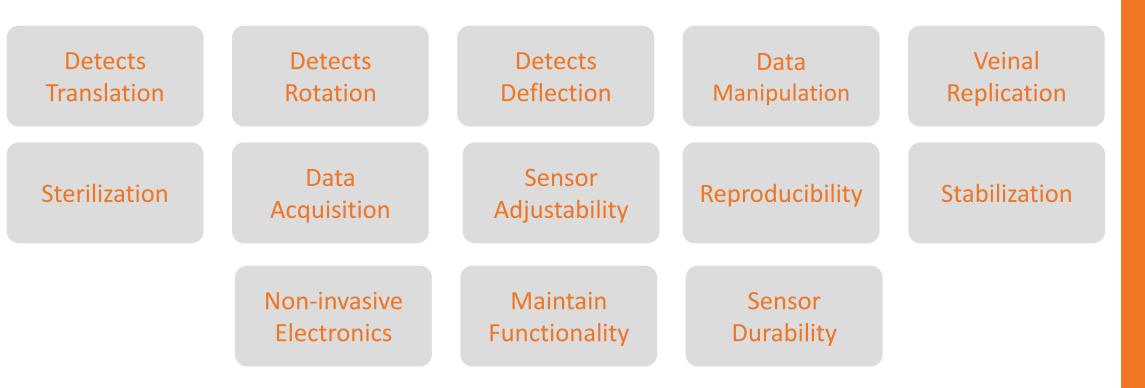
Procedure will be developed to allow for consistent, reliable, and valid results

Maintain Functionality

Measuring device does not interfere with the catheter's current functions/abilities

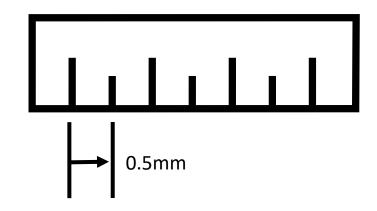
Sensor Durability

Sensors can withstand movement through the vein and in the heart without getting deteriorated

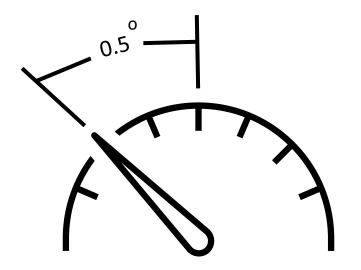


Functional Decomposition Table

Functional Cross Reference Table								
	Sensibility	Data Collection	Compatibility	Environment Simulation				
Detects Translation	x							
Detects Rotation	x							
Detects Deflection	x							
Data Aquisition		x						
Data Manipulation		x						
Live-Positioning Visual	x	x						
Veinal Replication			x	x				
Sterilization				х				
Sensor Adjustability			x	х				
Reproducibility		x		x				
Stabilization	х			x				


Targets — Critical Targets

- Detect Translation
 - Test various lengths of product and product within various common environments.
 - Product can detect translation of the distal end inside the testing arena within **0.5 mm**.



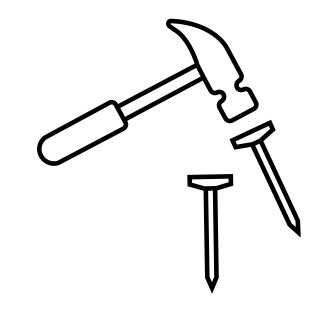
Hunter Walsh

Targets


- Detect rotation
 - The amount at which the product will be able to turn.
 - Product will detect the distal end output rotation and puller wire orientation with an accuracy of **0.5 degrees**.

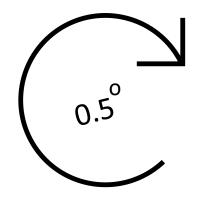
Targets

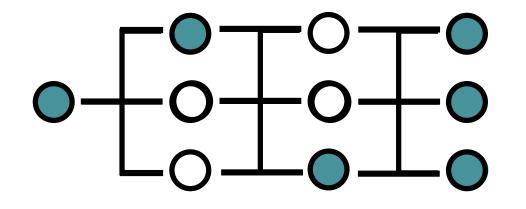
- Reproducibility
 - Research which material will be able to be used more than once or singularly.
 - Product will be able to be used more than once.



Hunter Walsh

Targets


- Stabilization
 - Develop various options for the testing area to be made from.
 - Product will be made of either **metal or wood** to ensure a firm foundation to test within.

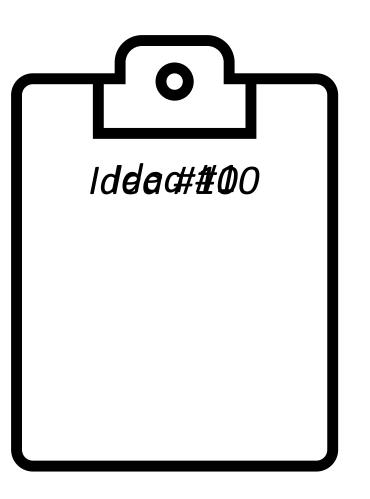

- Detect Deflection
 - Amount at which the product will be able to deflect.
 - Product will detect the distal end output translation and puller wire orientation with an accuracy of **0.5 degrees**.

Hunter Walsh

Concept Generation Generation Methods

Morphological Chart

Brainstorming


103 Biosense Webster

Concept Generation

Our team was able to generate over a 100 concepts using the forementioned generation methods and tools.

Some were great!

Some not so much...

Morphological Chart

Morphological chart was proved to be the most useful tool in terms of generating concepts.

Data Collection	Box Material	Sensor Type	Receiving Data	Fluid mixture
Excel	Wooden	Paint	Bluetooth	Water
Hand/ Visual Observation/ Protractor	Glass	Electromagnetic Sensor	Wire USB	Corn Syrup
Matlab, C++, Python	Plastic Polymer	GPS Module		Saline
	Metal	RFID Tags		Water and Corn Syrup
		Ultrasound Sensor		All 3
		Pressure Sensors		

5 Medium Fidelity Concepts

Medium Fidelity - #1

#1

Wooden

GPS sensors

Bluetooth

Mix of 3

MATLAB

#74

Wooden

Ultrasound Processing USB

Corn Syrup

n Syrup Excel #12

Metal

RFID Processing

Bluetooth

Corn Syrup

Excel

Ultrasound Processing Bluetooth Corn Syrup

#78

Metal

MATLAB

#65

Metal

Pressure Sensor Processing

Bluetooth

Diacto

Corn Syrup

MATLAB

103 Biosense Webster

High Fidelity - #1

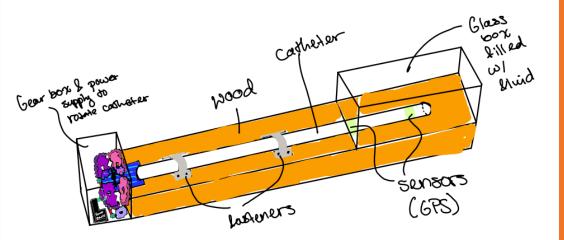

Wooden Box

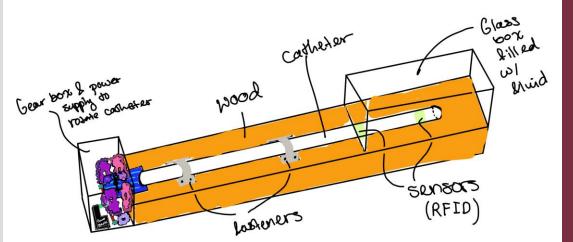
Image Processing

Bluetooth Connection

Corn Syrup + Water

MATLAB

High Fidelity - #2


Wooden Box

RFID Sensors

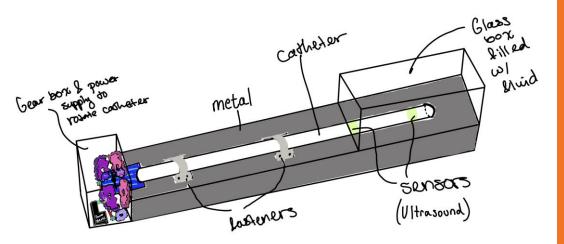
USD Connection

Corn Syrup + Water

MATLAB

Diana Shaughnessy

High Fidelity - #3

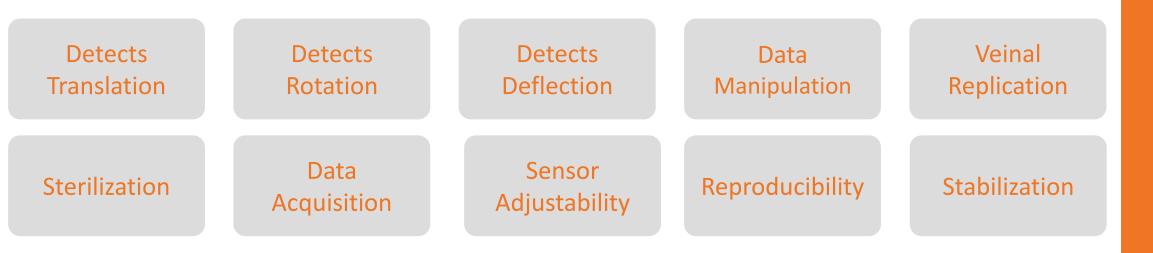

Metal Box

Ultrasound Sensor

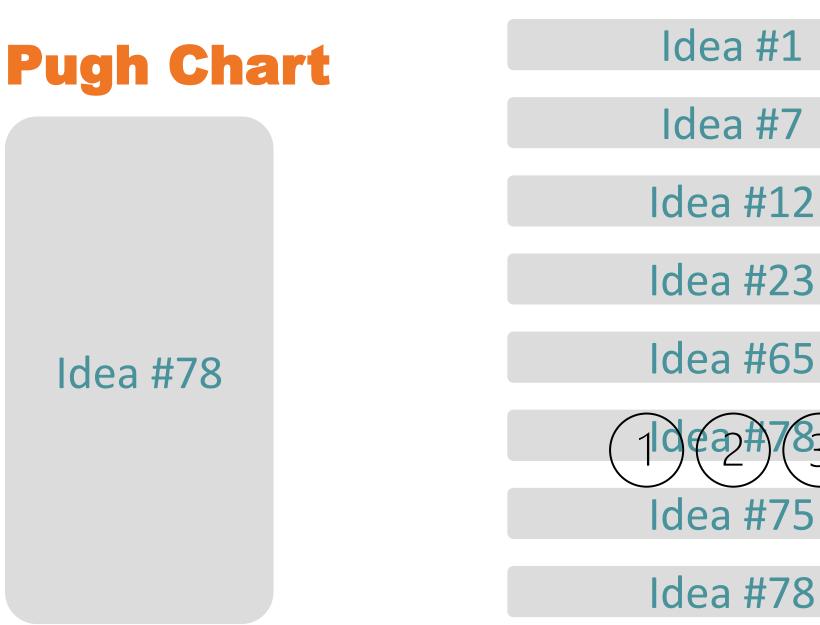
Bluetooth Connection

Corn Syrup + Water

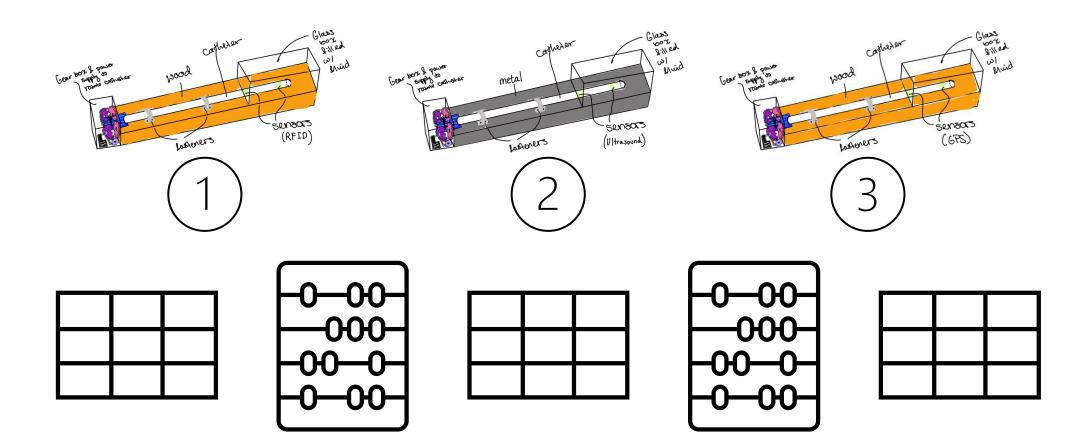
MATLAB


Binary Pairwise

Diana Shaughnessy


House of Quality

103 Biosense Webster


Diana Shaughnessy

Idea #78

Analytical Hierarchy Process

103 Biosense Webster

Final Selection

Our team's final selection

Material: Wooden Box

Sensor: Image Processing

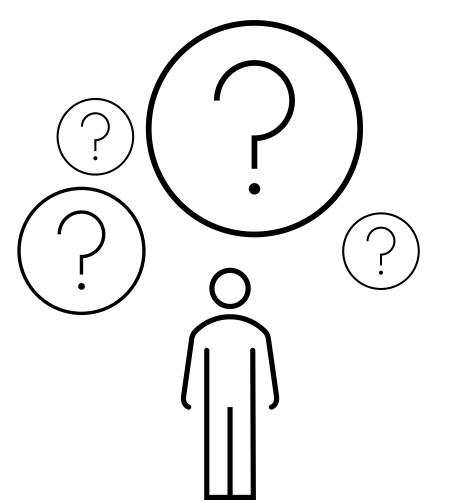
Data Collection: Bluetooth Connection

Fluid: Corn Syrup + Water

Data Analysis: MATLAB

Engineering

Future Work


- CAD model for design (11/13)
- Finalize Prototype Material (11/16)
- Order Parts for Prototype
- Assemble Prototype in B327
- Trip to Gainsville for Wet Lab
- Spring Project Plan (12/8)

Questions?

Thank you for listening!

103 Biosense Webster


Presenter Name

words

103 Biosense Webster

words

Sarah Churchwell

Team Introductions

Vivian Bernard Biomedical Engineer

Sarah Churchwell Mechanical Design Engineer Lauren Kazzab Biomedical Engineer

Zach Leachman Biomedical Engineer Samuel McMillan Electrical Engineer

Katelyn Kennedy Biomedical Engineer

Diana Shaughnessy Mechanical Design Engineer

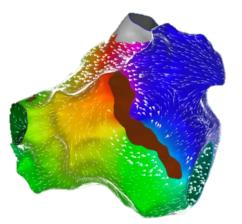
Hunter Walsh Electrical Engineer

Sarah Churchwell

Sponsors and Advisor

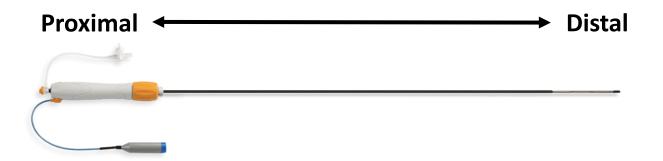
Development Mentor Charles Lindholm Director of R&D

Engineering Mentor Amar Patel R&D Engineer II


<u>Academic Advisor</u> Stephen Arce, Ph.D. *BME Professor*

Sarah Churchwell

Biosense Webster


"At Biosense Webster, Inc. we have one goal -

To help those with cardiac arrhythmias live the lives they want."

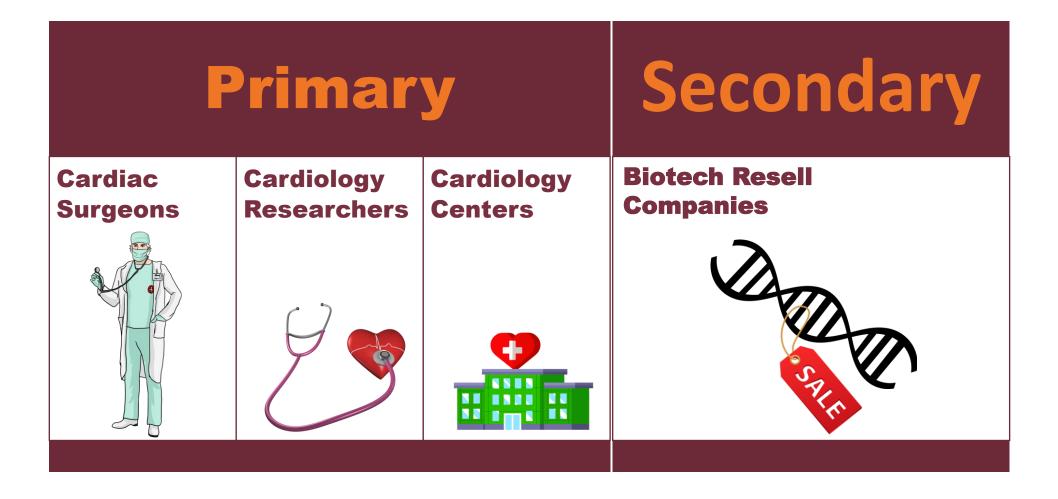
Objective

Design, build, and test a measurement device that measures manual inputs at the proximal end of a catheter and evaluates those inputs against a promise of a 1:1 translation of those inputs at the distal end.

Key Goals

Develop the testing arena that will be utilized for all proceeding manners

Determine the torsional deflection using the developed measuring system


Read the signals of angular deflection with a +/- 0.5° of freedom

Sarah Churchwell

Sarah Churchwell=

Primary & Secondary Markets

Assumptions

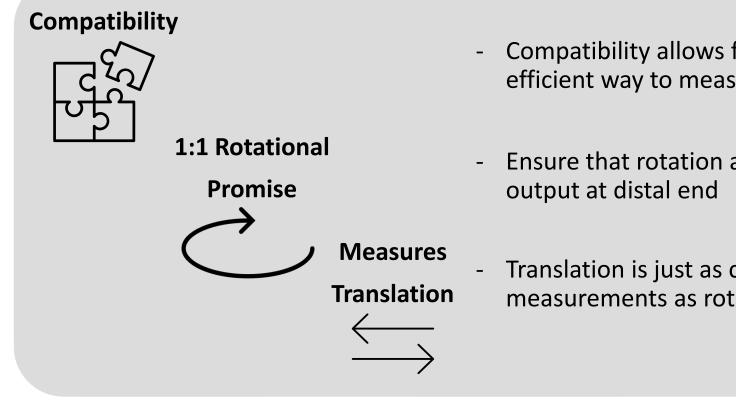
Demographic that will benefit from the success of the project will be those with heart issues (ex. Atrial Fibrillation)

Prototype will be design and in-production by the end of Fall 2023

Measuring Device will only be designed to be applied to the Biosense Webster Catheters

Sarah Churchwell

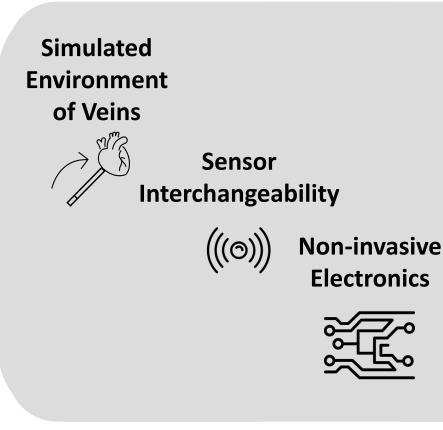
Stakeholders



Engineering Mentor Shayne McConomy, Ph.D. *ME Senior Design Coordinator* Engineering Mentor Jerris Hooker, Ph.D. *EE Senior Design Coordinator* Development Mentor Charles Lindholm Director of R&D

Sponsor Company Johnson & Johnson Family of Companies

Customer Needs



- Compatibility allows for a more concise and efficient way to measure across catheters
- Ensure that rotation at proximal end matches
- Translation is just as crucial to the measurements as rotation

Samuel McMillan

Customer Needs Cont.

- Allows for more real-life augmented prototyping and testing
 - Multiple tips of catheters that the sensors will need to be able to adapt with
- Electronics will not interfere with the user's ability to use the catheter

Customer Needs Cont.

Maintains Functionality

Sensor Durability

Measuring device does not interfere with the catheter's current functions/abilities

Procedure will be developed to allow for

consistent, reliable, and valid results

 Sensors can withstand movement through the vein and in the heart without getting deteriorated

-

Functional Decomposition

Main Functions/Systems

Customer Needs

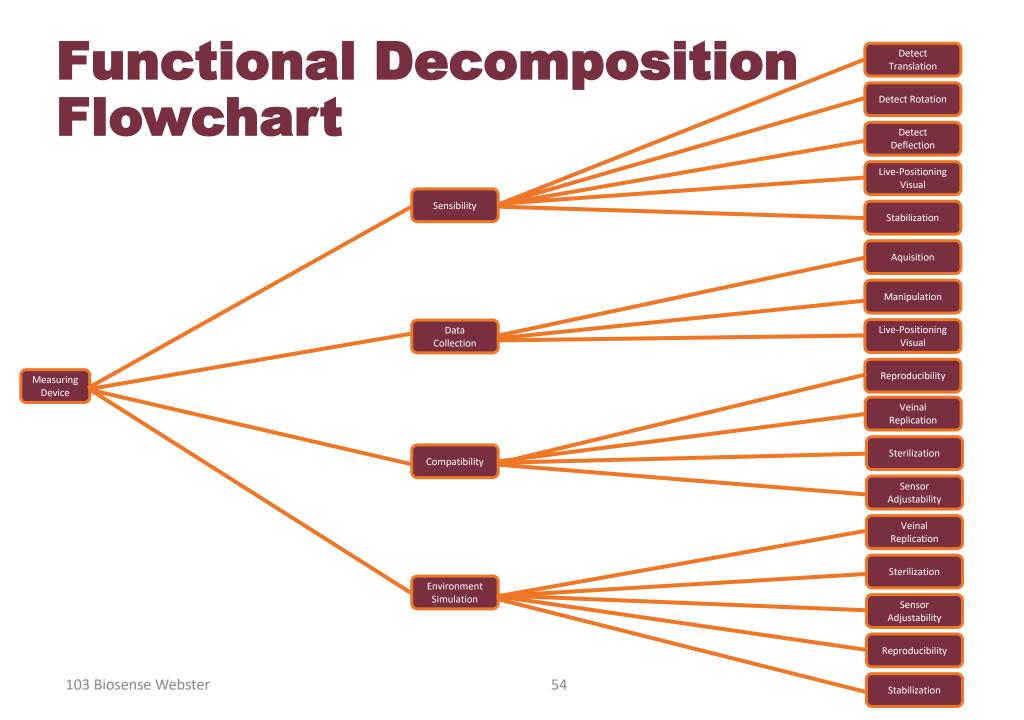
Main Functions/Systems

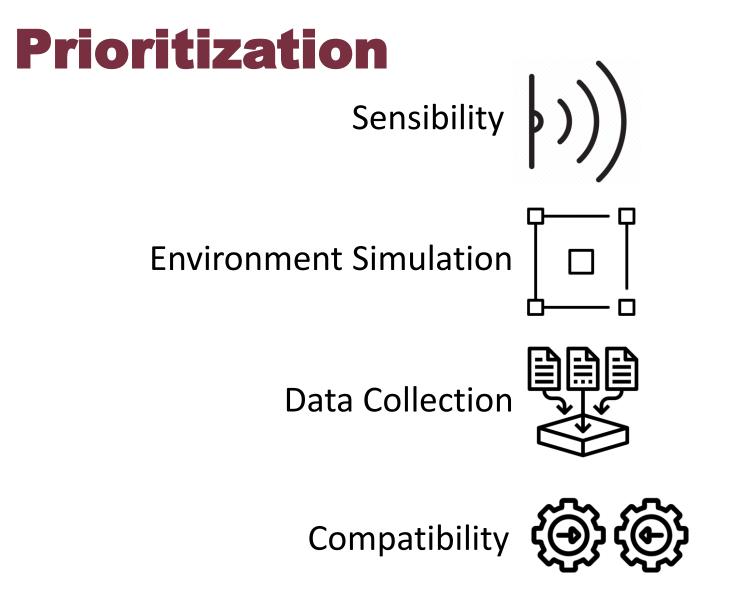
Functions/Subsystems

Environment Simulation

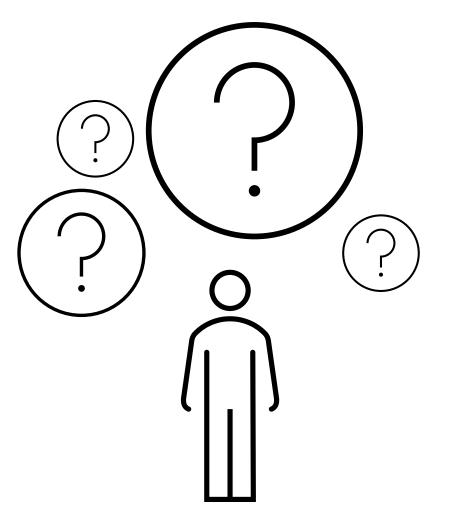
- Veinal Replication
 - Sterilization
 - Stabilization

Functional Decomposition Table


Functional Cross Reference Table								
	Sensibility	Data Collection	Compatibility	Environment Simulation				
Detects Translation	x							
Detects Rotation	x							
Detects Deflection	x							
Data Aquisition		х						
Data Manipulation		х						
Live-Positioning Visual	x	х						
Veinal Replication			x	x				
Sterilization				x				
Sensor Adjustability			x	x				
Reproducibility		х		x				
Stabilization	х			x				


Function Interrelations

	Functional Cross Reference Table						
- Live-Positioning Visua	Ι	Sensibility	Data Collection	Compatibility	Environment Simulation		
	Detects Translation	x					
 Sensor Adjustability 	Detects Rotation	x					
	Detects Deflection	x					
	Data Aquisition		x				
	Data Manipulation		x				
- Veinal Replication	Live-Positioning Visual	x	х				
	Veinal Replication			х	х		
	Sterilization				x		
- Stabilization	Sensor Adjustability			х	х		
	Reproducibility		x		х		
	Stabilization	х			x		


FAMU-FSU College of Engineering

Questions?

Thank you for listening!

103 Biosense Webster

Future Work

- Targets (11/3)
- Concept Generation (11/10)
- Concept Selection (11/10)
- Risk Assessment (11/24)
- Bill of Materials (12/4)
- Spring Project Plan (12/8)

