

## **Objective**

The objective of this project is to design, develop, and implement a system that enables the **simultaneous** testing of multiple samples within a vacuum chamber using a tribometer.

### Motivation

- Takes over 12 hours to reach high **vacuum** (10<sup>-6</sup> mbar).
- **Current solution tests only one**  $\bullet$ sample at a time.
- There is a need to test 4-6 samples simultaneously with the ability to use different inputs on different samples.

## **System Needs to**

- Accept user inputs for testing parameters and adjust them as needed.
- Continuously measure parameters.
- **Regulate** working temperature.
- Measure load cell.
- **Calculate** tribological quantities such as coefficient of friction, wear volume, and wear rate.
- Check safety requirements and **trigger** an emergency stop if needed.
- **Display** the calculations and sensor readings using the AME's existing **GUI in MATLAB**.

# A Tribometer in Space-like Conditions **Team 501: Madison Retherford, Cobi Johnson, Branham Channell, Javier Ibanez, Joshua Wesley**

## **Selected Concept**

**Six Mini Tribometers** The six mini tribometers (Figure 1) will be three to a row placed back-to-back. They are like the current design but scaled down to fit inside of the vacuum chamber together.



Figure 1

# **Design Challenges**

- inside the chamber.
- samples.
- $\bullet$ such a small work area.

Scale of the tribometers to fit six

• Approximately 2 ft. x 2 ft. cylinder.

• Space for the operator to **change out** 

• How quickly and easily this will be able to get done.

Ensuring **no cross contamination** in

• Wiring of electrical components and ensuring GUI compatibility will take a substantial amount of time.

### **MATLAB Calculations**

The coefficient of friction  $(\mu)$  is obtained by **dividing the frictional force** by the applied normal force.

The wear volume  $\Delta V = Vi - Vf$  where Vi is the initial volume of the sample and *Vf* is the final volume of the sample. The system will calculate real time data for meaning Vf updates constantly.

The wear rate  $K = \Delta V / FnD$  where  $\Delta V$  is the change in volume of the sample, *Fn* is the normal force and D is the displacement.



Figure 2, Macromolecules 2022, 55, 3924–3935



### **CAD Design Prototype**



Figure 5

# **Future Work**

- **Develop** and produce an assembly to optimize the leaf spring and load cell. **Determine mounting points** in the
  - vacuum chamber.
- Finalize the CAD model.
- Simulate the CAD functioning under  $\bullet$ spacelike conditions.