

# Virtual Design Review 2 Team 510 – Danfoss IC

-

11/16/2023

### **Team Overview**



Joseph Bechara Controls Engineer



Hunter Dabbs Systems Engineer



Tye Fountain Mechanical Design Engineer



Thiago Todesco Manufacturing Engineer



### **Sponsor and Advisor**



Engineering Mentor Bruce Barnett Manufacturing Engineer



Engineering Mentor William Bilbow Director of Project Management



<u>Academic Advisor</u> Shayne McConomy, Ph.D. *Teaching Faculty II* 



# Objective



Develop an apparatus that tests the functionality of four different Danfoss Inlet Guide Vanes (IGVs), giving relevant data and prompting the operator with a pass or fail message.





Joseph Bechara

### Assumptions





**Key Goals** Adaptable Safe Intuitive Robust Durable



Joseph Bechara

# Functional Resolution









Hunter Dabbs

### **Targets and Metrics**



FAMU-FSU College of Engineering

# **Targets and Metrics**

Torque compliance

Determining IGV model Tracking movement of IGV blades

Tracking test state

Tracking ball indicator location

Read and process angle of IGV blades











# **Targets and Metrics**

Start/Stop test

Open/Close IGV blades Monitor torque output of the electric motor





FAMU-FSU College of Engineering

Restricts IGV blades

Store test data

Read and process ball indicator location

# **Targets and Metrics**

Supplies power to IGV motor Indicate results to user

Resist an impact force of 10 Newtons





Supplies power to test system

Receive inputs from user

Prevent tipping with a max force of 10 Newtons at the top







# **Concept Generation**





### **Medium Fidelity Concepts**

































# **High Fidelity Concepts**







FAMU-FSU College of Engineering







FAMU-FSU College of Engineering

Hunter Dabbs

# **House of Quality**





Hunter Dabbs

# **Pugh Chart**





# **Pugh Chart: First Round**











Hunter Dabbs

### **Pugh Chart: Second Round**









# **Analytical Hierarchy Process**

| Concept      | <b>Alternative Value</b> |
|--------------|--------------------------|
| MysteryBox   | 0.235                    |
| ButterCookie | 0.333                    |
| MegaMaid     | 0.432                    |



### **Final Selection**







Accurate and precise







Hunter Dabbs

### **Future Work**





### Questions

