

Virtual Design Review 6 Team 510 – Danfoss IC

-

03/19/2024

Thiago Todesco

Team Overview

Joseph Bechara Controls Engineer

Hunter Dabbs Systems Engineer

Tye Fountain Mechanical Design Engineer

Thiago Todesco Manufacturing Engineer

Thiago Todesco

Sponsor and Advisor

Engineering Mentor Yiwei Liu Manufacturing Engineer

Objective

Develop an apparatus that tests the functionality of four different Danfoss Inlet Guide Vanes (IGVs), giving relevant data and prompting the operator with a pass or fail message.

Thiago Todesco

Background

ditte-

Background

.....

Thiago Todesco

Assumptions

Thiago Todesco

Targets and Metrics ••• Controls Structure Provision Sensing Communication

8

FAMU-FSU College of Engineering

Department of Mechanical Engineering

Thiago Todesco

Department of Mechanical Engineering

FAMU-F<u>su</u> College of Engineering

FAMU-FSU College of Engineering

FAMU-FSU College of Engineering

FAMU-FSU College of Engineering

FAMU-FSU College of Engineering

Medium Fidelity Concepts

Joseph Bechara

High Fidelity Concepts

Joseph Bechara

Concept Selection Overview

Final Selection

Accurate and precise

Current Design

Current Design Baseplate

Utilize Existing Baseplate

Hunter Dabbs

Current Design Structural Frame

80/20 Aluminum

Test Plate

Workstation Table

Hunter Dabbs

Current Design Test Plate

Current Design Arduino Case

Arduino

Current Design Laser Positioning

Screws

- 80/20 Hardware
- X-Y Positioning axis

Laser Hardware

Laser

Current Design Blade Functionality

Laser Receiver Status

Current Design Blade Functionality

IGV Blade

Current Design Steel Ball Tracking

Tye Fountain

Current Design Steel Ball Tracking

Department of Mechanical Engineering

Tye Fountain

Current Design Steel Ball Tracking

The ball moves relative to the blades

Magnetic flux is tracked as the ball moves

Tye Fountain

Tracking IGV Model

Testing In Progress

FEA Analysis

Displacement (mm)	
0.00	
0.03	
0.06	
0.08	
0.10	

Testing and Validation

Tests Conducted

Steel Ball Indicator Location

Measure: 0/1

Hunter Dabbs

Design Inclusive PFMEA Document

	PFMEA												
Process Function Requirements	Potential Failure Mode	Potential Effects of Failure	SEV	CLA	Potential Cause(s)/ Mechanism(s) of Failure	000	Current Process Controls Prevention	Current Process Controls Detection	DET	RPN	stomer Issue	Recommended Action(s)	Responsibility & Target Completion Date
-	-	-	¥	•	-	•	-	-	•	•	-	-	-
WIRE & SECURE 4- Pin Feed Thru	Stepper motor mis- wired	Does not operate or reverse operation	4		Wiring reversed	4	SOP, Training	Visual	8	128		No recommened actions	
PERFORM IGV functionality test	Incorrecy IGV assembly	Compressor performance drop	7		Incorrect IGV assembly selected	2		Automated test	3	42		No recommened actions	
PERFORM IGV functionality test	Incorrect thorat assembly	Compressor performance drop	7		Incorrect throat assembly selected	2		Automated test	3	42		No recommened actions	
PERFORM IGV functionality test	Blade(s) won't fully open/close	Compressor malfunction	7		blade mechanism defect	4		Automated test	3	84		No recommened actions	
PERFORM IGV functionality test	Blade(s) won't move	Compressor malfunction	7		blade mechanism defect	3		Automated test	3	<mark>63</mark>		No recommened actions	
PERFORM IGV functionality test	IGV move reversly	Compressor malfunction	7		IGV blade mechanism installed incorrectly	4		Visual	7	196		Upgrade IGV functionality test system to include automated detection for reversed blades	Senior Design 2025
PERFORM IGV functionality test	Chips on blade edge	Compressor malfunction	7		Improper storage or assembly of blades	2		Visual	7	98		No recommened actions	
PERFORM IGV functionality test	Ball indicator does not function properly	Maintanence and end user dissatisfaction	4		blade magnet not installed or installed incorrectly	3		Automated test	3	36		No recommened actions	
PERFORM IGV functionality test	Blade movement resitriction or resistance	Compressor malfunction	7		blade mechanism defect	3		Automated test	3	63		No recommened actions	

Potential Improvements

Barcode Scanner

Monitor GUI

Blade Defect

Hunter Dabbs

Budget Breakdown

Remaining Budget \$3,427.47

Micrometer \$801.50

Lasers \$340.00

Miscellaneous \$233.47

Aluminum \$197.57

Lessons Learned

Recover From Mistakes

Finite Element Analysis

Adapt to Customer Requirements

Managing Scope Creep

