

Powder Removal in Microgravity Environments (PRIME) Team 518

-

Virtual Design Review 2

Team Introductions

Cole Daly Mechatronics Engi neer

Chelsea Kiselewski Quality and Design Engineer

Lauren McNealy Systems Engineer

Team Introductions

Kyle Evans Thermal Fluids Engineer

Tripp Lappalainen Manufacturing and Design Engineer

Alexander Fryer Project and Test Engineer

Sponsor and Advisor

<u>Project Sponsor</u> Justin McElderry Materials Engineer -NASA Marshall Space Flight Center

<u>Academic Advisor</u> McConomy, Shane Ph.D.

FAMU-FSU College of Engineering

Objective

The objective of this project is to develop a proof of concept for removing powder residue from additive manufactured parts in microgravity environments.

Engineering

Project Background

Additive Manufacturing offers: Rapid Prototyping Reduced Production Time

Trapped powder inside parts

> Hazardous particles in microgravity

Goal: Portable cleaning device to bring to ISS

Engineering

Key Goals

Assumptions

No supports

120V, 15A outlet

P = 1 atm

Functional Decomposition

Cleaning

Containment/Safety

Targets and Metrics

FAMU-FSU College of Engineering

Targets and Metrics

Design will be able to clean 85-90% of debris

Cleaning

Containment/Safety

Engineering

Targets and Metrics

Design will be able to clean 85-90% of debris

Cleaning

Particle are contained with no leaks in the device

Containment/Safety

Engineering

Targets and Metrics

Measuring Safety of Device

Contain Debris
Prevent Leaks
Structurally Sound

Targets and Metrics

Targets and Metrics

Targets and Metrics

Targets and Metrics

Cole Daly

Concept Generation

Generation Methods

Biomimicry	Forced Analogy	Anti- problem	Battle of Perspectives
 Snake Like Device Elephant Trunk Jetting 	Car WashDishwasher	Powder CoatSonic Wave	 Momentum Shaker Spinning Disk

19

FAMU-FSU College of Engineering

Cole Daly

Medium Fidelity Concepts

Cole Daly

-1 - 2 - 3 - 4 - 5 - Cole Daly

- Spray water through grooves under the plate
- Cycle the water around

 Particles are thrown outward away from the part

Spinning Plate

4

3

Momentum Shaker

4

• Shake the part in a confined space

 Particles are detached and moved away from the part

 Use a vacuum attachment to collect dust through small grooves in the part Gathers powder on the outside wall and inside cavities of the part

4

3

• Causing the part to expand flushing the particles out

Boiling Water

4

3

High Fidelity Concepts

Sonic Wave Cleaner

- Sonic waves pulsed underneath fluid
- Fluid is spun creating vortices
- Fluid is drained while being spun to keep the particles away

Liquid Nitrogen Spray

- Rotating Plate spins the part
- Sprayed from underneath and side
- Vacuum used to create a pressure differential

Pulsing Vacuum Nucleation

- Vacuum pulse every second
- Soapy water had been used as medium
- Fluid is drained once pulses have been completed

House of Quality

Pugh Chart: First Iteration

Pugh Chart: Second Iteration

Analytical Hierarchy Process

Final Selection			
Concept	Alternative Value		
Sonic Wave Vibrational Cleaning	0.533		
Liquid Nitrogen Sprayer	0.333		
Pulsing Vacuume Nucleation	0.134		

FAMU-FSU College of Engineering **Future Work**

Create first

prototype

Research and list materials needed

Talk about next semester plans

Iterate on prototype

Research skills needed to build device

NASA

Chelsea Kiselewski

Justin McElderry, J.E. (2023, September 22). Intro to PRIME. NASA Marshall Space Flight Center

Questions

37

FAMU-FSU College of Engineering