

Concept Selection

Following the determination of our high-fidelity concepts and medium fidelity concepts, selection tools were used to quantify and rank each concept's ability to fulfill project goals. The selection tools used include the binary pairwise comparison, house of quality, Pugh charts, and the analytical hierarchy process. Having quantifiable characteristics allows for easier design comparison and final design selection.

1.1 Binary Pairwise Comparison

Binary pairwise comparison is a method that compares each customer need against one another. The customer needs are put into rows and columns and if the need on the row is more important than the need of the column it receives a "1", but if the need on the row is not more important than the need of the column it receives a "0". After the completion of the comparison table the importance weight factor is obtained from the far-right column that adds the total number each row receives. This weight factor is then used in the House of Quality.

Customer Needs	Life-span	Fluid Loss	Active Seal	Material Resilience	Resusability	Maintains Pressure	Effective Coupling	Heat Transfer	Particulate Mitigation	Channel Sizing Parameters	Cost	Total
Life-span		0	0	0	1	0	0	0	1	0	1	3
Fluid Loss	1		1	1	1	0	0	1	1	1	1	8
Active Seal	1	0		1	1	0	1	1	1	1	1	8
Material Resilience	1	0	0		1	0	0	0	0	0	0	2
Resusability	0	0	0	0		0	0	0	0	0	0	0
Maintains Pressure	1	1	1	1	1		1	0	0	1	1	8
Effective Coupling	1	1	0	1	1	0		1	1	1	1	8
Heat Transfer	1	0	0	1	1	0	0		1	1	1	6
Particulate Mitigation	0	0	0	1	1	0	0	1		1	1	5
Channel Sizing Parameters	1	0	0	1	1	0	0	0	0		0	3
Cost	0	0	0	1	1	0	0	0	0	1		3
Raw Total	7	2	2	8	10	0	2	4	5	7	7	n-1=9
Relative Weight	6%	15%	15%	4%	0%	15%	15%	11%	9%	6%	6%	100%
Weight Factor	0.389	0.296	0.296	0.296	0.000	0.000	0.296	0.444	0.463	0.389	0.389	

Table 6:	Binary	Pairwise	Compar	rison	Matrix
----------	--------	----------	--------	-------	--------

Key					
0	Not as important				
1	Important				

1.2 House of Quality

The House of Quality is a table that compares the engineering characteristics in the columns of the table and customer requirements as the rows. The matrix allows the group to identify the critical engineering characteristics that satisfy the project according to customer requirements. A ranking/score from row to column of 0,1,3, and 9 were given for final rankings of each engineering characteristic. If a "0" was given that meant the requirement had no significance on the requirement and if a "9" was given that meant it had a very significant impact on the characteristic. A raw score was calculated from the sum of the importance weight factor multiplied by each ranking for each requirement. From these raw scores the top three engineering characteristics were found to be: leakage, boil off, and temperature.

		Engineering Characteristics								
House of Quality	Improvement Direction	t	-	t	1	Ļ	t	4		
	Units	cm	К	SCIM	SCIM	SCIM	MPa	\$		
Customer Requirements	Importanc e Weight Factor	Diameter	Temp.	Flow Rate	Leakage	Boil Off	Tensile Strength	Price		
Life-span	3	0	1	0	3	1	9	1		
Fluid Loss	8	0	3	3	9	9	1	3		
Active Seal	8	3	1	1	3	1	0	1		
Material Resilience	2	-	3	1	1	1	9	3		
Reusability	0	1	1	0	0	0	3	3		
Maintanis Pressure	8	1	3	1	9	1	3	1		
Effective Coupling	8	3	1	1	3	0	1	0		
Heat Transfer	6	3	9	1	1	9	0	1		
Particulate Mitigation	5	0	0	0	0	0	0	1		
Channel Sizing Parameters	3	9	1	9	0	1	0	1		
Cost	3	3	1	0	1	1	3	9		
Raw Score:	875	110	133	83	212	153	94	90	Average Weight Pe	
Total: 875	Weight (%)	12.57	15.20	9.49	24.23	17.49	10.74	10.29	14.29	
	Rank order	4	3	7	1	2	5	6		

Table	7:	House	of	Ouality	
laoie	<i>'</i> •	110000	$\mathcal{O}_{\mathcal{I}}$	Quanty	

Кеу							
0 - Not Significant							
1 - Moderately Significant							
3 - Very Significant							
9- Extremely Significant							

1.3 Pugh Charts

Two Pugh charts are implemented in our selection analysis. The first allows us to compare seven concepts to the market datum, the NASA Low Separation Force Quick Disconnect. We assigned scores in the form of better (+), worse (-), and satisfactory (S) in the following categories: leakage, lifetime, seal, resilience, size, and cost. Our goal is to improve upon the current market datum in the six chosen categories. This ensures that we will select a design that will be better than the existing cryogenic coupler chosen as a reference. The scores are then summed, so that "better" has a value of +1 and "worse" has a value of -1.

Table 8: Pugh Chart- Concept

	Pugh C	hart- Concep	ot				
Selection Criteria	Concept Datum	Concept #48	Concept #50	Concept #49			
Leakage		s				K	ey
Lifetime	8	1.1	S				Worse
Seal	#	s	1.1		1	+	Better
Resilience	lac	1.1	1.1			s	Satisfactory
Size	ē	+	S	+	1		
Cost		+	+	+	1		
	Pluses	2	1	2			
	Satisfactory	2	2	0			
	Minus	2	3	4			
	Decision	0	-2	-2			
Fidelity	Concept #						
High	33	Force held lock	with double popp	et valve, encaps	ulated o-ring sea	ls, double vacuu	m wall and MLI

The second Pugh chart is in the same configuration as the first, but the reference for comparison is a design from the market datum Pugh Chart. This table compares the top designs to this new reference. The purpose of this is to compare the designs to each other and get an idea of which concepts perform well in the chosen categories in reference to each other. These two charts allow us to choose a design that is both better than the market datum and outperforms the other top concepts.

	Pugn Chart - Market													
Selection Criteria	Market Datum	Concept #33	Concept #48	Concept #50	Concept #49	Concept #31	Concept #32	Concept #30			Ke	εγ		
Leakage	st	+	+	+	+	-			1	-		Worse		
Lifetime	jati	+	+	+	+	+	+	+	1	+		Better		
Seal	Disc	+	+	+	+	-			1	s	1	Satisfactory		
Resilience	ow S uick	S	s	S	s	+	+	+	1					
Size	10	-	-	-	-	-			1					
Cost	For								1					
	Pluses	3	3	3	3	2	2	2	1					
	Satisfactory	1	1	1	1	0	0	0	1					
	Minus	2	2	2	2	4	4	4	1					
	Decision	1	1	1	1	-2	-2	-2	1					
Fidelity	Concept #							Description						
High	33	Force held lock	with double popp	et valve, encaps	ulated o-ring sea	ils, double vacuu	m wall and MLI							
High	48	Force held lock	with double popp	et valve, encaps	ulated o-ring sea	als, double vacuu	m wall and SOFI							
High	50	Force held lock	with double popp	et valve, Teflon s	seals, double vac	cuum wall and MI	J							
Medium	49	Force held lock	with double popp	et valve, Teflon s	seals, double vac	cuum wall and SC)FI							
Medium	32	Collet lock with	double poppet va	lve, encapsulate	d seals, double v	acuum and MLI								
Medium	31	Collet lock with	double poppet va	lve, encapsulate	d seals, double v	vacuum and SOF	1							
Medium	30	Collet lock with	double poppet va	lve, Teflon seals	, double vacuum	and MLI								

1.4 Analytical Hierarchy Process (AHP)

The Analytical Hierarchy Process (AHP) is a table that compares the targets against each other to determine the weight it has in our consideration of the top design. In each cell, we assigned a value using the following key: equal (1), slightly more important (3), strongly more important (5), demonstrated dominance (7), and highly evident dominance (9). The sum and average for each column was calculated. The normalized matrix was also implemented, where the scores in the first chart are interpolated to a range between 0 and 1 such that the vertical summation is 1.

Table 10: Analytical	Hierarchy Process	(Normalized)
~	~		-

Criteria	1. Fuel Leakage	2. Sealability	3. Heat Transfer	4. Durability	5. Weight	6. Cost	Critical Weight
1. Fuel Leakage	0.03	0.01	0.02	0.04	0.05	0.03	0.03
2. Sealability	0.10	0.04	0.02	0.04	0.05	0.03	0.048
3. Heat Transfer	0.17	0.18	0.08	0.06	0.11	0.06	0.12
4. Durability	0.23	0.26	0.40	0.29	0.34	0.18	0.304
5. Weight	0.23	0.26	0.24	0.29	0.34	0.53	0.271
6. Cost	1.40	1.54	1.45	1.72	0.68	1.07	1.357
Sum	0.767	0.744	0.758	0.713	0.887	0.822	0.774

Normalized Comparison Matrix [NormC]

From the normalized chart the relative weights that were found were then used to

calculate the alternative values from matrix multiplication.

Concept	Alternative Value
#33	1.032268981
#48	0.466251315
#50	0.632534386

Table 11: Final Alternate Values for Design Selection

This finally led to the teams selection of Concept #33 which involves a force held lock and double poppet valve configuration, insulated by a double vacuum wall and MLI blanket and using encapsulated seals.