

NSWC - RoboBoat Team 521

October 19, 2023 | Virtual Design Review 1

-

Makenzie Wiggins

Team Introductions (ME)

Ivanna Caballero Materials Engineer

Andly Jean Mechatronic Engineer

Nicholas Norwood Mechanical Systems Engineer

Makenzie Wiggins Design Engineer

Team Introductions (EE)

Sophia Barron Electrical Systems Engineer

Michael Fitzsimmons Electronics Engineer

Lucca Meyer *Test Engineer*

3

Makenzie Wiggins

Sponsor and Advisor

Engineering Mentor/Sponsor Dr. Damion Dunlap Navy Surface Warfare Center

<u>Academic Advisor</u> Dr. Shayne McConomy *Senior Design Coordinator*

Makenzie Wiggins

Background

RoboBoat

- Program at RoboNation
- An international student competition
- Design autonomous, robotic boats to navigate through a challenge course
- Tackle tasks that mimic real-world challenges

Background

RoboBoat

- Program at RoboNation
- An international student competition
- Design autonomous, robotic boats to navigate through a challenge course
- Tackle tasks that mimic real-world challenges

Task 1: Navigation Channel Task 2: Follow the Path Task 3: Docking Task 4: Duck Wash Task 5: Speed Challenge Task 6: **Collection Octagon** Task 7: **Delivery Octagon** Task 8: **Return to Home**

Makenzie Wiggins

Task 1: **Navigation Channel** Task 2: Follow the Path Task 3: Docking Task 4: Duck Wash Task 5: Speed Challenge Task 6: **Collection Octagon** Task 7: **Delivery Octagon** Task 8: **Return to Home**

Makenzie Wiggins

<u>Task 1</u>: **Navigation Channel** Task 2: Follow the Path Task 3: Docking Task 4: Duck Wash Task 5: Speed Challenge Task 6: **Collection Octagon** Task 7: **Delivery Octagon** Task 8: **Return to Home**

<u>Task 1</u>: **Navigation Channel** Task 2: Follow the Path Task 3: Docking Task 4: **Duck Wash** Task 5: Speed Challenge Task 6: **Collection Octagon** Task 7: **Delivery Octagon** Task 8: **Return to Home**

Makenzie Wiggins

<u>Task 1</u>: **Navigation Channel** Task 2: Follow the Path Task 3: Docking Task 4: Duck Wash Task 5: **Speed Challenge** Task 6: **Collection Octagon** Task 7: **Delivery Octagon** Task 8: **Return to Home**

Task 1: **Navigation Channel** Task 2: Follow the Path Task 3: Docking Task 4: Duck Wash Task 5: Speed Challenge Task 6: **Collection Octagon** Task 7: **Delivery Octagon** Task 8: **Return to Home**

Task 1: **Navigation Channel** Task 2: Follow the Path Task 3: Docking Task 4: Duck Wash Task 5: Speed Challenge Task 6: **Collection Octagon** Task 7: **Delivery Octagon** Task 8: **Return to Home**

Task 1: **Navigation Channel** Task 2: Follow the Path Task 3: Docking Task 4: Duck Wash Task 5: Speed Challenge Task 6: **Collection Octagon** Task 7: **Delivery Octagon** Task 8: **Return to Home**

Project Objective

The objective of this project is to design, build and program an autonomous surface vehicle capable of completing several tasks in the following categories:

- Navigation
- Detection
- Object delivery
- Object avoidance
- Station keeping
- Conduct two-step behavior

FAMU-FSU College of Engineering

Ivanna Caballero

Primary Markets

Ivanna Caballero

Secondary Markets

Assumptions

Access to Senior Design Lab/Machine Shop

ASV will comply with RoboBoat Rulebook

Access to previous Technical Reports

Competition will be in February 2024

Assumptions

Weather is beyond our control

Battery will have full charge prior to start

Safety Inspection

One task required to Compete

Ivanna Caballero

Stakeholders

FAMU-FSU College of Engineering

Customer Needs

Ivanna Caballero

Functional Decomposition

Sophia Barron

Functional Decomposition

Sophia Barron

Functional Decomposition

Sophia

Future Work

Sophia Barron

References

About. RoboBoat. (2021, March 13).

https://roboboat.org/about/

Past programs. RoboBoat. (2019, September 27). https://roboboat.org/past-programs/

RoboBoat 2024. RoboBoat. (2023, October 13). https://roboboat.org/programs/2024/

Sophia Barron

Thank You

Thank You

Backup Slides

Functional Decomposition

FAMU-FSU College of Engineering

Near Future Work

- Start working on robot localization
 - Test different GPS module (found in Senior design room)
 - Draft navigation code diagram
 - Test different obstacle aversion methods on prototype
- Test given thrusters (PCB Campus)
- Set target and metrics
- Draft different concept ideas
 - Boat hull designs
 - Thruster design and placement
 - Drive Modes
 - Etc.
- Start drafting and testing kill switches
 - Remote with RC transmitter
 - Physical with push button

Future Work

- Select a concept
- Start working on materializing chosen structural design
- Start working on camera object detection
 - Geometric segmentation: Recognizing shapes
 - Semantic segmentation: Object class (Ducks, buoy, etc)
- Integrate different functional systems
 - I.e navigation w/ locomotion and object detection
- Preliminary electrical calculations/schematics
 - Power supply calculations
 - Overall block diagrams
- Finalize first draft of test code for the Autonomous navigation portion of ASV

- This is 10-point
- This is 15–point Times
- This is 20–point
- This is 25-point
- This is 30–point
- This is 35–point
- This is 40-point
- •This is 50–point
- •This is 60–point 44

