

Development of an Autonomous Surface Vehicle

FAMU-FSU Engineering

Objective

To **design**, **build**, and **program** an autonomous surface vehicle capable

of completing tasks in these categories:

- Navigation
- Detection
- Object Avoidance & Delivery
- Station Keeping
- Two-Step Behaviors

Background

- **Roboboat** is an international student competition to design an ASV that navigates through a challenge course.
- Composed of tasks that mimic realworld challenges in maritime industry.

Key Goals

Modular Code Architecture

Team 521

S. Barron | I. Caballero | M. Fitzsimmons | A. Jean | L. Meyer | N. Norwood | M. Wiggins

2024 Competition Course Map

Current State of Design

Main Functions

Out of 8 functions generated Navigation, Structure and Safety were the main three selected.

Critical Targets

- Size: ≤ 6 ft x 3ft x 3ft
- Weight: $\leq 140 \text{ lbs.}$
- Autonomous navigation: True
- Kill switch integration: True
- Battery life > 30 min.

Future Work

- Hull finished and components mounted.
- Electrical components interfaced.
- 3
- Performance tests and results analyzed.
- 4 Final video filmed.

Full Evidence Manual

