

Head Armor Pro Team 101

-

Design Review #2

Team Introduction

Anghea Dolisca Biomedical Engineer

Mechanical Engineer

Riley Stroth Mechanical Engineer

Maddie Valachovic **Biomedical Engineer**

Connor Hollis

Sponsor and Advisors

DEPARTMENT OF CHEMICAL & BIOMEDICAL ENGINEERING

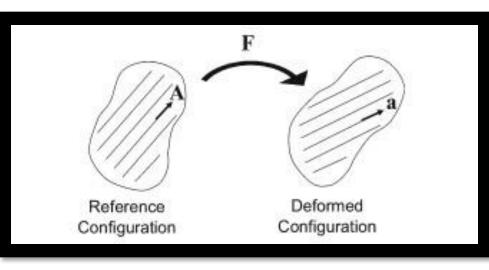
Project Supervisor Dr. Stephen Arce

Project Coordinator Dr. Shayne McConomy

Academic Advisor Emily Thiel

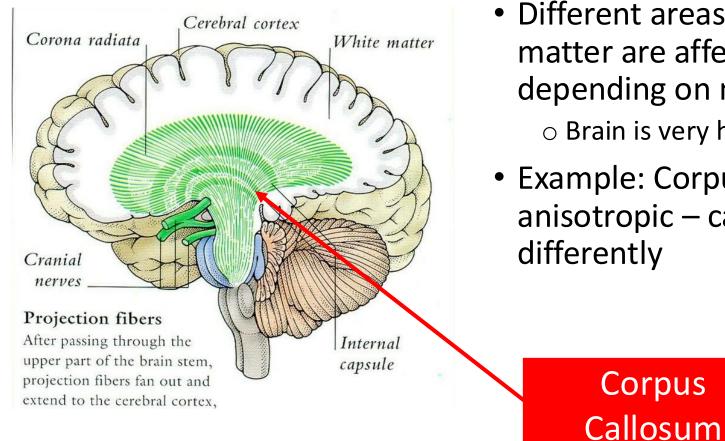
Objective

The objective of this project is to research and design a device that will reduce the risk of concussions for athletes across all sports, with a specific focus on football players.


The Problem: What is a concussion?

A dive into Stress-Strain Theory, Cavitation Theory for Traumatic Brain Injury (TBI) and its relationship to Head Injury Criterion (HIC)

Stress-Strain Theory


- Sudden inertial loads to the head cause injury
- Mild TBI, damage occurs at cellular and subcellular level
- Neural axons are stretched inelastically (~18%), disrupting normal biochemical processes in the cells
- This leads to impairment of the neurons cell and even death

Connor Hollis

Stress-Strain Theory cont.

- Different areas of the brain's white matter are affected differently depending on neural fiber orientation

 Brain is very heterogeneous
- Example: Corpus Callosum is anisotropic – can induce strains differently

Head Injury Criteria

- Helmet testing, automotive safety, and sports
- Quantifies potential head injury risk from impact
- Based on duration and severity of acceleration
- Thresholds:
 - HIC < 250: Low risk
 - HIC > 250: Increased risk of serious injury

$$HIC_{15} = max \left\{ \left[\frac{1}{t_2 - t_1} \int_{t_a}^{t_2} a(t) dt \right]^{2.5} (t_2 - t_1) \right\}$$

Head Injury Criterion relating to Stress-Strain Theory

Various local injury criteria based on pressure gradients, strains, stresses and strain rates

Table 6

- The threshold of 60g+ of linear acceleration
- Force distribution of the brain affects some areas more than others
- Neural orientation plays a factor

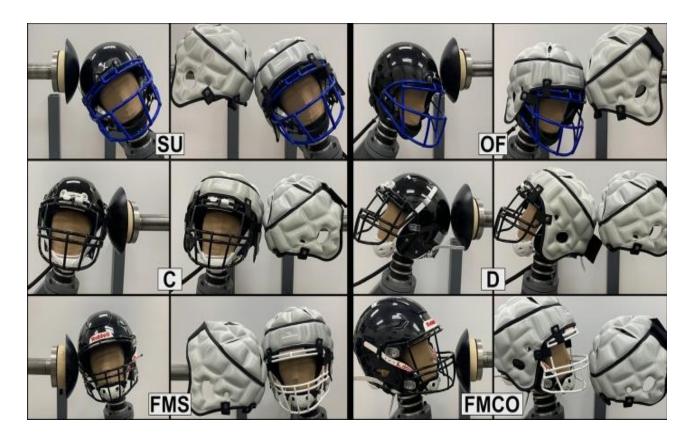
Criterion	Threshold	Location of injury	Probability (%)	Application	Reference
Stress	25 CHR455	6305 9460	12-1-1-1	os annos rescueran	85 86 SHIMPSZIN
von Mises	6-11 kPa	Corpus callosum	50	Rat brain/car crash injuries	Shreiber et al. [127]
	8.4 kPa	Corpus callosum	50	Footballers (FEM)	Kleiven [77]
	>30 kPa	Brain neurological lesions	100	Motorcyclists/footballers	Willinger and Baumgartne
	>16 kPa	Brain neurological lesions	50	Motorcyclists/footballers (FEM)	[157]
Shear	8-16 kPa	Diffuse axonal injuries	100	Sheep brain	Anderson et al. [4]
	11-16.5 kPa	Diffuse axonal Injuries	100	Motorcycle Accidents	Claessens et al. [27]
	>10 kPa	Mild TBI	80	Footballers (FEM)	Zhang et al. [163]
Strain					
88.	30/s	Gray matter	50	Multiple specimens	Viano and Lovsund [148]
EÈ	10.1/s	Gray matter	50	Footballers (FEM)	Kleiven [77]
E, Ê	$\varepsilon > 0.2$	White matter	100	Tissue culture	Morrison et al. [95]
	$\dot{\epsilon} > 10/s$				
Shear strain	>0.24	Mild TBI	80	Footballers (FEM)	Zhang et al. [163]
Lagrangian principal strain	>0.21	Morphological injury	50	Guinea pigs	Bain and Meaney [8]
	>0.181	Electrophysiological impairment			
Cumulative strain	≥ 0.55	White matter	50	FEM	Takhounts et al. [138]
Intra Cranial Pressure (ICP)					
ICP	<173 kPa	Concussion	0	Animal/human cadavers	Ward et al. [155]
	>235 kPa		100	(FEM)	
	>90 kPa	Injury (coup side)	50	Footballers (FEM)	Zhang et al. [163]
	>-76 kPa	Injury (counter coup)			
Amount of explosives					
0.205 lb TNT (standoff distance 160 cm)	ICP > 235 kPa	Coup/counter coup side	100	FEM	Chafi et al. [20]
	Shear	Brain stem			
	stress > 16.5 kPa				
	Principal				
	strain > 0.22				

Cavitation Theory

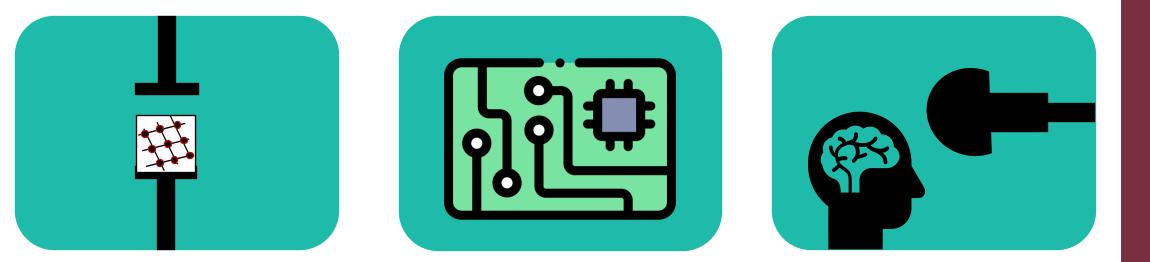
- Introduced by Dr. David Smith inventor of Q-Collar
 - The brain and spinal column can intake
 30mL of fluid
- F = m x a
- "Tensile force exceeds the tensile strength of the fluid, the fluid will tear apart, producing temporary cavities."

Connor Hollis

Cavitation Theory



Is this phenomenon occurring inside of your head?


A study done on "Guardian Caps"

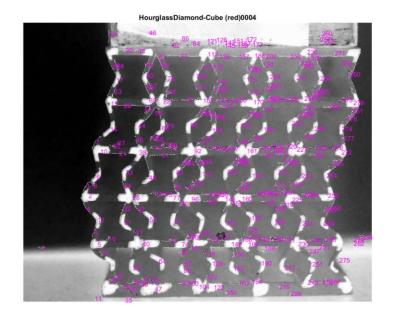
- Linear Impactor:
 - o 3.5, 5.5, 7.4 (m/s)
 - 6 impact locations tested: 4 covered by padding, 2 on facemask
- HARM values (Head Acceleration Response Metric) reduced by an average of 25%, 18%, and 10% respective to the velocities

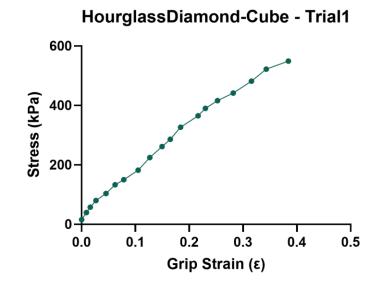
Approach to Solving the Problem

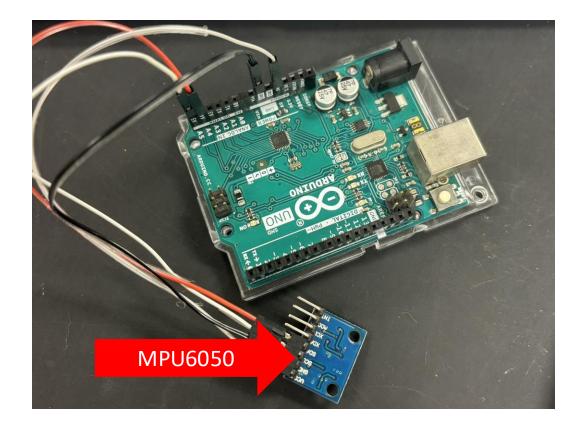
Auxetic Foam Design

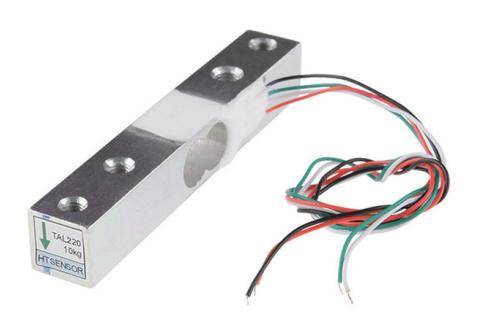
- Auxetic Foam Characteristics-
 - $\circ~$ Thicker when stretched
 - $\circ~$ Compresses efficiently under force
 - Negative Poisson's ratio- expands perpendicular from pressure
- Hexagon with Hourglass Design
 - \circ Flexible
 - Energy distribution
 - $\circ~$ Resistant to shear force

Foam Tensile Testing


- Testing-
 - Assess durability, flexibility, and material integrity
 - Evaluate ability to withstand impact, compression, and wear
- Expected Results-
 - \circ Impact Absorption
 - \circ Durability




Results (So Far...)


- Linear stress-strain relationship • Exponential curve is wanted
- Understanding of the foam's maximum stress threshold
- Current test applies around 120 N

Key Components of the Circuit

Circuit Thresholds

Riley Stroth

Our Approach – Impact Drop Testing

Experiment in HPMI Lab:

- Measure 4 locations of model head
- Measure 4 different heights from drop test
- Record acceleration inside helmet for foam vs. control

 \odot Reduce accelerations by > 5%

Future Work

Combine code

Wireless and compact circuit design

Complete experiments, record results, improve the design

Riley Stroth

22

Riley Stroth

References

Gross, A. G. (1958). A new theory on the dynamics of brain concussion and Brain Injury. *Journal of Neurosurgery*, 15(5), 548–561. https://doi.org/10.3171/jns.1958.15.5.0548

- Wright, R. M., & Ramesh, K. T. (2011). An axonal strain injury criterion for traumatic brain injury. *Biomechanics and Modeling in Mechanobiology*, 11(1–2), 245–260. <u>https://doi.org/10.1007/s10237-011-0307-1</u>
- Östh, J., Bohman, K., & Jakobsson, L. (2022). Head injury criteria assessment using head kinematics from crash tests and accident reconstructions. *Traffic Injury Prevention*, 24(1), 56–61. <u>https://doi.org/10.1080/15389588.2022.2143238</u>
- Deck, C., & Willinger, R. (2008). Improved head injury criteria based on head fe model. *International Journal of Crashworthiness*, 13(6), 667–678. https://doi.org/10.1080/13588260802411523
- Kulkarni, S. G., Gao, X.-L., Horner, S. E., Zheng, J. Q., & David, N. V. (2013). Ballistic helmets their design, materials, and performance against Traumatic Brain Injury. *Composite Structures*, 101, 313–331. <u>https://doi.org/10.1016/j.compstruct.2013.02.014</u>
- Corona radiata: Radiata, white matter, brain anatomy. Pinterest. (2020, February 11). https://in.pinterest.com/pin/614459942896848304/

Cavitation gifs. WiffleGif. (n.d.). https://wifflegif.com/tags/386612-cavitation-gifs?page=0

Cecchi, N. J., Callan, A. A., Watson, L. P., Liu, Y., Zhan, X., Vegesna, R. V., Pang, C., Le Flao, E., Grant, G. A., Zeineh, M. M., & Camarillo, D. B. (2024, October). *Padded helmet shell covers in American Football: A comprehensive laboratory evaluation with preliminary on-field findings*. Annals of biomedical engineering. <u>https://pmc.ncbi.nlm.nih.gov/articles/PMC10013271/#Sec2</u>

O'Connor, K. L., Rowson, S., Duma, S. M., & Broglio, S. P. (2017, March). *Head-impact-measurement devices: A systematic review*. Journal of athletic training. https://pmc.ncbi.nlm.nih.gov/articles/PMC5384819/

