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Project Objective
The objective of this project is to design a device that will reduce 
the risk of concussions for athletes across all sports, with a specific 
focus on football players. 
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Background Overview
Connor Hollis



• Forces deform brain cells.

• Disrupts biochemical 
process.
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Stress-Strain vs. Cavitation
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Stress-Strain Theory



• Tensile force > Tensile 
strength of liquid.

• Microscopic bubbles 
implode and release large 
amounts of energy.
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Stress-Strain vs. Cavitation
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Cavitation Theory
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Stress-Strain vs. Cavitation

Connor Hollis

Stress-Strain Theory

Cavitation Theory

Deaccelerating 
the Brain
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Design Goals and Targets

Connor Hollis

Deaccelerate the 
Brain by 5%

Weigh Less than 
1.5 kg

Withstand 1,000 
Impacts

Linear Acceleration 
Reduced by 25%

Reduce Rotational 
Force by 20%
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Design Goals and Targets

Connor Hollis

Deaccelerate the 
Brain by 5%

Weigh Less than 
1.5 kg

Withstand 1,000 
Impacts

Linear Acceleration 
Reduced by 25%

Reduce Rotational 
Force by 20%

• Head Injury Criteria 
predicts the likelihood of 
receiving a brain injury

• Concussions: HIC > 250

𝐻𝐼𝐶 = {(𝑡2- 𝑡2)(
1

𝑡2− 𝑡1
𝑡1

𝑡2 𝑎 𝑡 𝑑𝑡)2.5}𝑚𝑎𝑥 
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Design Goals and Targets

Connor Hollis

Deaccelerate the 
Brain by 5%

Weigh Less than 
1.5 kg

Withstand 1,000 
Impacts

Linear Acceleration 
Reduced by 25%

Reduce Rotational 
Force by 20%

• Concussive Threshold: 
70g to 120 g

𝐹𝑅 =  𝑀𝑎𝑠𝑠 𝑥 981 𝑚/𝑠2
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Design Goals and Targets

Connor Hollis

Deaccelerate the 
Brain by 5%

Weigh Less than 
1.5 kg

Withstand 1,000 
Impacts

Linear Acceleration 
Reduced by 25%

Reduce Rotational 
Force by 20%

• Concussive Rotational 
Acceleration Threshold- 
4500 to 6000 rad/s2

𝑎𝑟 = 𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2
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Design Goals and Targets
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Deaccelerate the 
Brain by 5%

Weigh Less than 
1.5 kg

Withstand 1,000 
Impacts

Linear Acceleration 
Reduced by 25%

Reduce Rotational 
Force by 20%



Proposed Solution
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• Honeycomb hourglass structure
o 3D printing with stereolithography (SLA) 

technology

o Flexible 80A resin

o Light weight profile

• Hexagonal auxetic foam structure  
o Negative Poisson’s ratio

o Enabling lateral expansion during impact 
deformation
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Current Auxetic Foam Design

Connor Hollis



• Alerts coaches and trainers to high-
impact events, for immediate injury 
assessments

• Understanding linear and rotational 
impacts

• Concussive Thresholds:
o Linear Acceleration- 70 to 120 g

o Rotational Acceleration- 4500 to 6000 rad/s2
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Impact Monitoring Sensor

Connor Hollis

MPU6050
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Material Testing

Riley Stroth

5kg

M
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Drop Test – Failures and Successes

Riley Stroth

Load Cell

Arduino 
& Circuit



20

Drop Test – Failures and Successes

Riley Stroth

5kg
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Drop Test – Failures and Successes

Riley Stroth

5kg

Load Cell Reading-
Recorded Pound Force 

Theoretical Value-
Force = Mass • Gravity • Height
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Drop Test – Failures and Successes

Riley Stroth

5kg
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Pendulum Impact Test

Riley Stroth
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Pendulum Impact Test 

Riley Stroth
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Pendulum Impact Test 

Riley Stroth
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Pendulum Impact Test 

Riley Stroth



Material as a Spring

Riley Stroth

Stiffness (K) and Damping 
Coefficient (C)

Energy Absorbed : 

Deformation Under 
Certain Frequencies

Theoretical Acceleration



Material as a Spring

Riley Stroth

• Stiffness of 3466.5 N/m
• Treated the material as a linear spring
• Not considering damping
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Material as a Spring

Riley Stroth



Material as a Spring

Riley Stroth



Material as a Spring

Riley Stroth

• Kelvin Voigt Model
o Viscoelastic material
o Spring and Damper in Parallel

Based on Compression Instron Test:

Spring 
Constant (K)

Damping 
Coefficient (C)

Trial 1 1087.4 N/m 319 x 105 N•s/m

Trail 2 251.9 N/m 109 x 105 N•s/m
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Future Work

Riley Stroth

Phase 1:

Continue 
Compression 

Test

Assure Linear 
Thresholds are 

Reached

Evaluate 
Material 

Properties

Phase 2:

Wireless 
Accelerometer

Test with 
Pendulum 
Impactor

Sizing and 
Implementing 

Material
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