

Head Armor Pro Team 110

S. Devulapalli, A. Dolisca, C. Hollis, R. Stroth, M. Valachovic

Anghea Dolisca

Team Introduction

Saiabhinav Devulapalli Biomedical Engineer

Anghea Dolisca Biomedical Engineer

Connor Hollis Mechanical Engineer

Riley Stroth Mechanical Engineer

Maddie Valachovic Biomedical Engineer

Anghea Dolisca

Sponsor and Advisors

Project Supervisor Dr. Stephen Arce

Project Coordinator

Dr. Shayne McConomy

Academic Advisor Emily Thiel

Project Objective

The objective of this project is to design a device that will reduce the risk of concussions for youth football players.

The Problem to Tackle

Youth Football

5/100 players are diagnosed with a concussion

What is a Concussion?

Current Solutions

Ethylene-vinyl Acetate (EVA) Foam Helmet

Guardian Cap: Closed- Cell Foam

Maddie Valachovic

Connor Hollis

Concussion Theories

Stress-Strain Theory

Cavitation Theory

Connor Hollis

Concussion Theories

Accelerations

Deaccelerating the Brain

Linear Accelerations

Rotational Accelerations

Connor Hollis

Connor Hollis

Concussive Thresholds

Design History

Sai Devulapalli

Final Auxetic Material Design Hexagon Outer Shape 3D printing with stereolithography (SLA) technology Light weight profile Viscoelastic Design Hourglass Layer Negative Poisson's ratio FAMU-FSU College of Engineering

Sai Devulapalli

Compression Testing Results

Material Properties	EVA Foam	HAP Foam
Young's Modulus (MPa)	0.157	0.287
Yield Strength (MPa)	0.009	0.003
Ultimate Strength (MPa)	0.071	0.019
Fracture Strain	0.342	0.567

Head Armor Pro Material Property Reflection

- Greater Fracture Strain = Higher Energy Absorption
 - Allows more deformation before failure
- Higher Young's Modulus = Resists compression early
- Lower Yield & Ultimate Strength = Controlled Stress Plateau
 - Reduces peak force to the head

Mechanical Model Comparison

Spring Constants (N/m)		
Helmet	EVA Foam	
6000	9728.20	

Auxetic Foam (HAP)			
Spring Constant (N/m)	Dampening Coefficient (Ns/m)		
1345.21	1.24 x 10 ¹⁰		

Maddie Valachovic

HPMI Drop Test

Riley Stroth

HPMI Drop Test

Riley Stroth

HIC Results

Head Armor Pro

consistently reduced impact forces by **60%**

Similar results to our Mathematical Model

Rotational Acceleration Results

26

Sai Devulapalli

Sai Devulapalli

Rotational Acceleration Results

Rotational Acceleration Results

Head Armor Pro
EVA Foam

Sai Devulapalli

Summary	Auxetic Foam Design	EVA Foam	Conclusion
Theoretical Acceleration		×	15% Reduction
Experimental Acceleration		×	60% Reduction
HIC Value		×	60% Reduction
Max Rotational Acceleration		×	33% Reduction
Young Modulus		×	82% Increase
Fracture Strain		×	65.8% Increase

Anghea Dolisca

Connor Hollis

Cost, Market, and Opportunity

Elementary School: \$52 M

Middle School: \$42.4 M

High School: \$121 M

College & Pros: \$24.9 M

3 Million Players Market Size: \$240.3 M

Future Work

FAMU-FSU

College of Engineering

Sai Devulapalli

ACCInVenture Prize

- People's Choice Award Voting [3/31 4/2]
- Text <u>FSU</u> to ACC Number: 415-965-7445
- Live Broadcast: 4/2 (7PM 8PM)

Thank You!

References

Gross, A. G. (1958). A new theory on the dynamics of brain concussion and Brain Injury. *Journal of Neurosurgery*, *15*(5), 548–561. https://doi.org/10.3171/jns.1958.15.5.0548

- Wright, R. M., & Ramesh, K. T. (2011). An axonal strain injury criterion for traumatic brain injury. *Biomechanics and Modeling in Mechanobiology*, *11*(1–2), 245–260. <u>https://doi.org/10.1007/s10237-011-0307-1</u>
- Östh, J., Bohman, K., & Jakobsson, L. (2022). Head injury criteria assessment using head kinematics from crash tests and accident reconstructions. *Traffic Injury Prevention*, 24(1), 56–61. https://doi.org/10.1080/15389588.2022.2143238
- Deck, C., & Willinger, R. (2008). Improved head injury criteria based on head fe model. *International Journal of Crashworthiness*, *13*(6), 667–678. https://doi.org/10.1080/13588260802411523
- Kulkarni, S. G., Gao, X.-L., Horner, S. E., Zheng, J. Q., & David, N. V. (2013). Ballistic helmets their design, materials, and performance against Traumatic Brain Injury. *Composite Structures*, *101*, 313–331. <u>https://doi.org/10.1016/j.compstruct.2013.02.014</u>
- Corona radiata: Radiata, white matter, brain anatomy. Pinterest. (2020, February 11). https://in.pinterest.com/pin/614459942896848304/

Cavitation gifs. WiffleGif. (n.d.). https://wifflegif.com/tags/386612-cavitation-gifs?page=0

- Cecchi, N. J., Callan, A. A., Watson, L. P., Liu, Y., Zhan, X., Vegesna, R. V., Pang, C., Le Flao, E., Grant, G. A., Zeineh, M. M., & Camarillo, D. B. (2024, October). *Padded helmet shell covers in American Football: A comprehensive laboratory evaluation with preliminary on-field findings*. Annals of biomedical engineering. <u>https://pmc.ncbi.nlm.nih.gov/articles/PMC10013271/#Sec2</u>
- O'Connor, K. L., Rowson, S., Duma, S. M., & Broglio, S. P. (2017, March). *Head-impact-measurement devices: A systematic review*. Journal of athletic training. <u>https://pmc.ncbi.nlm.nih.gov/articles/PMC5384819/</u>
- Mayo Clinic. (2024, January 12). Concussion: Symptoms and causes. https://www.mayoclinic.org/diseases-conditions/concussion/symptoms-causes/syc-20355594
- Shepherd, B. (2017, December 3). Football and concussions: Information to protect your children. U.OSU. https://u.osu.edu/groupbetaengr2367/brianadd-stuff-here/#:~:text=According%20to%20a%20study%20done,concussions%20in%20high%20school%20athletes

Riley Stroth

- Daneshvar, D. H., Baugh, C. M., Nowinski, C. J., McKee, A. C., Stern, R. A., & Cantu, R. C. (2011). Helmets and mouth guards: The role of personal equipment in preventing sport-related concussions. *Clinics in Sports Medicine*, *30*(1), 145–163. <u>https://doi.org/10.1016/j.csm.2010.09.006</u>
- Sinnott, A. M., Chandler, M. C., Van Dyke, C., Mincberg, D. L., Pinapaka, H., Lauck, B. J., & Mihalik, J. P. (2023). Efficacy of Guardian Cap soft-shell padding on head impact kinematics in American football: Pilot findings. *Journal of Sports Science and Medicine*, *22*(4). https://doi.org/10.4085/10650906
- Talavage, T. M., Nauman, E. A., Breedlove, E. L., Yoruk, U., Dye, A. E., Morigaki, K. E., Feuer, H., & Leverenz, L. J. (2014). Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. *Journal of Neurotrauma*, *31*(4), 327–338. https://doi.org/10.1089/neu.2010.1512

UW Medicine. (2018, December 12). Media contact: Brian Donohue, UW Medicine & Lindsay Kurs, Seattle Children's Hospital.

Linear Model – Comparisons

FAMU-FSU
College of
Engineering

37.74

31

36.36

Acceleration (m/s^2)

Rotational Model – Comparisons

Output Metric	Helmet	Elastic Foam (EVA)	Auxetic Foam (HAP)
Torque (Nm)	50	13.71	8.66
Rotational Acceleration (rad/s ²)	1.3 x 10 ⁵	1.2 x 10 ⁵	1.1 x 10 ⁵

