

Team Introductions

Joseph Liberato

Biomedical Engineer

Andrew Baumert

Biomedical Engineer

Joseph Liberato

Kyle Giddes Mechanical Engineer

Aaron Gonzalez

Biomedical Engineer

Nikolya Cadavid Mechanical Engineer

Arianna Escalona Biomedical Engineer

Sponsors and Advisors

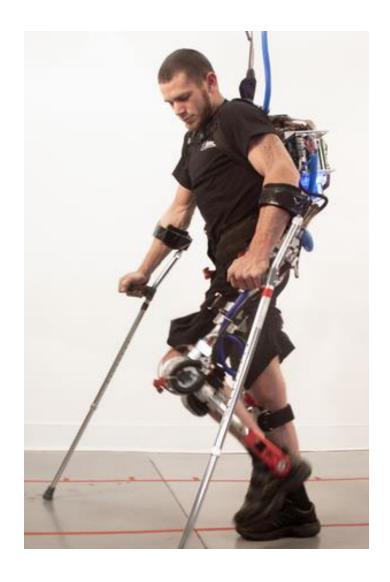
Academic Advisor
Shayne McConomy
Professor

Academic Advisor
Stephen Hugo Arce
Professor and
Sponsor

Engineering Mentor
Taylor Higgins
Point of Contact
& Advisor

Objective & Background

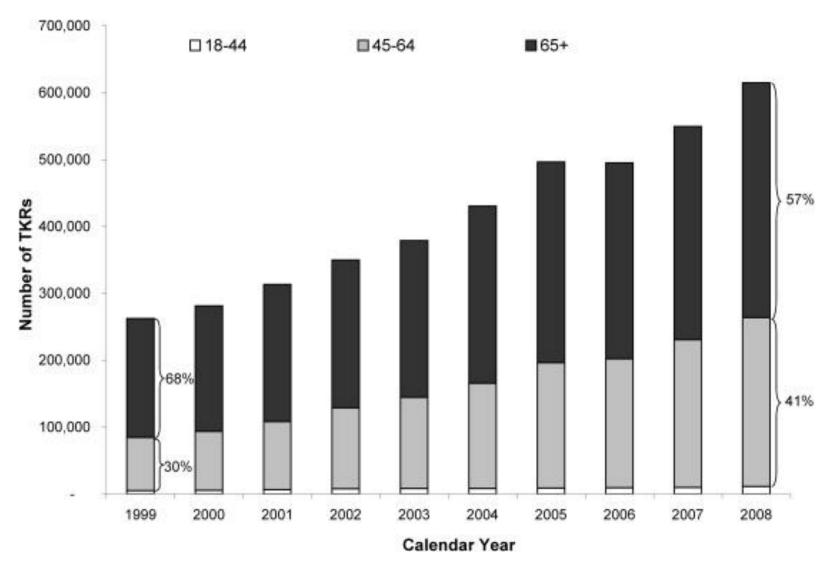
Joseph Liberato




Objective

- Goal: Develop a device to enhance recovery from knee surgery.
- Target Procedures:
 - Total Knee Replacements (TKR)
 - Anterior cruciate ligament (ACL) reconstruction
 - Medial collateral ligament (MCL) reconstruction
- Functions:
 - Provides immediate mechanical assistance
 - Delivers electrical stimulation (e-stim) to aid physical therapy
- Outcome: Accelerate patient recovery and improve rehabilitation results.

Project Background - Inspiration



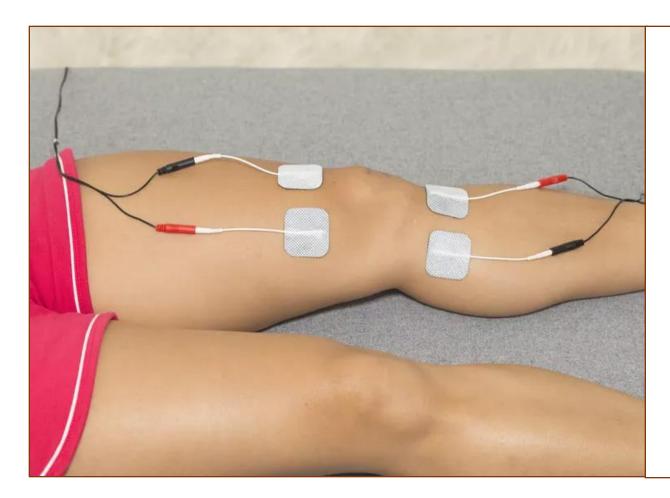
Joseph Liberato

Project Background - Clinical Background

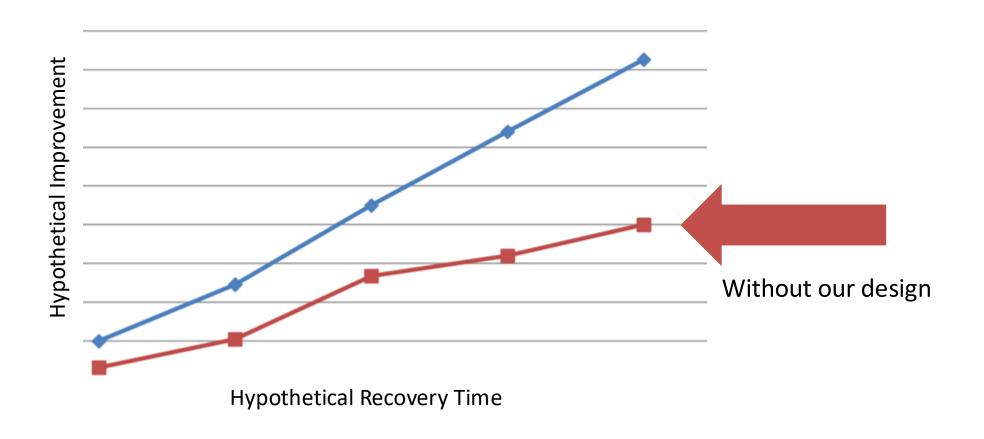
Project Scope

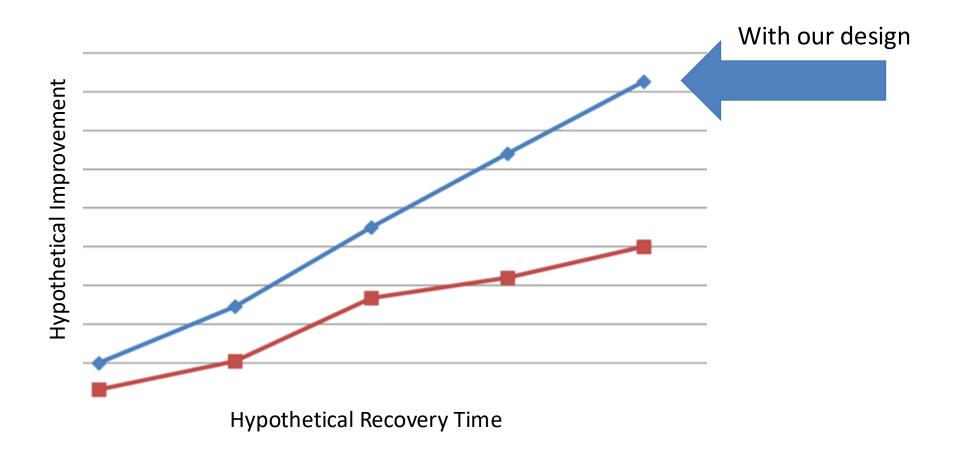
Safe, Supervised, Speedy Post-Surgery Recovery

Designed for (Almost) Everyone

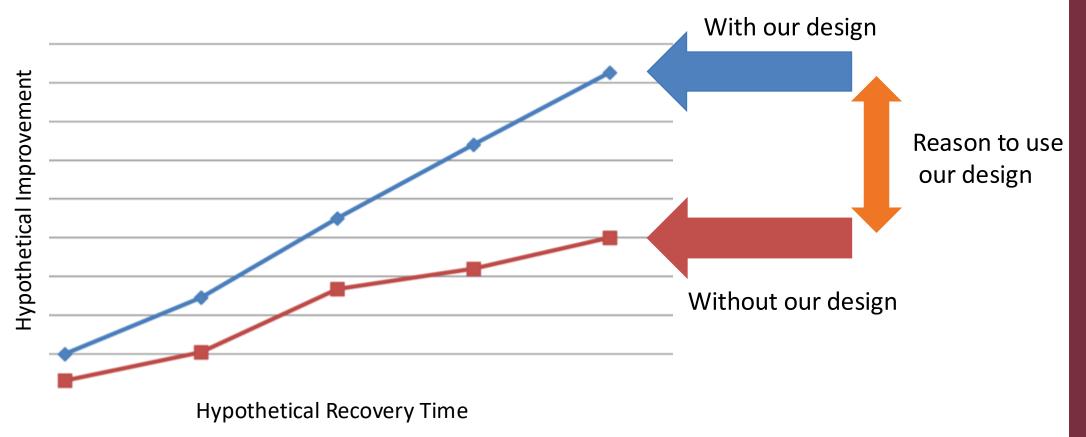


Convenience over Novelty


Combining Good Ideas



Providing Measurable Value



Providing Measurable Value

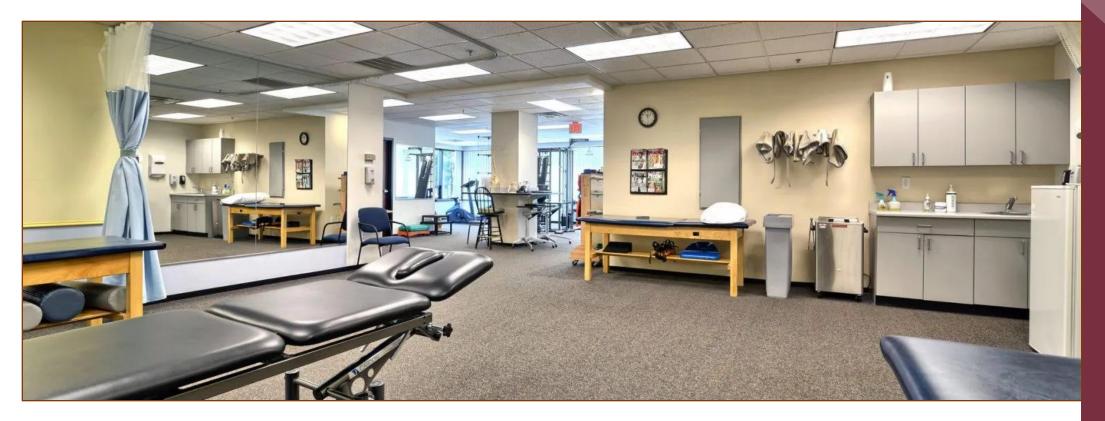
Providing Measurable Value

Instilling Confidence

Key Goals

Modular Design

Convenience


Integrated Electrical Stimulation

Data Aquisition

Safety

Customers

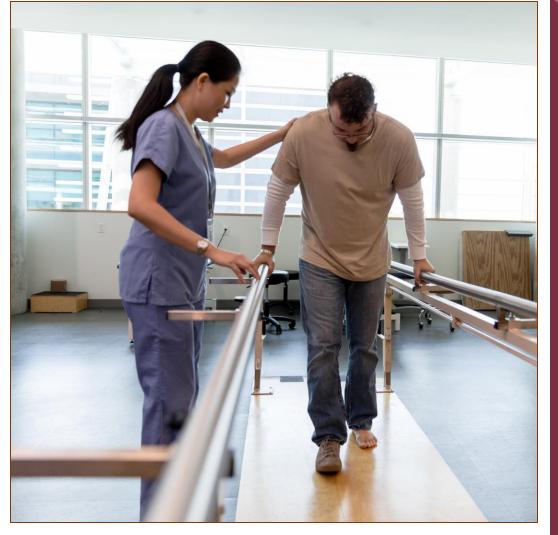
Primary Market:
Physical Therapy Clinics

Secondary Market:
Post-Surgery Patients



Customer Needs

Nikolya Cadavid

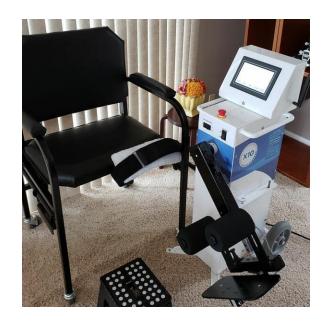

Customer Concerns

What is most important?

Customer Requirements	IWF:
1. Biomechanically Acc.	10
2. Mechanical Rehab	9
3. Adjustability (Fitting)	7
4. Electrical Rehab	7
5. Data Acquisition	6
6. Ease of Use	5
7. Comfort/Pain reduction	4
8. Cost	3
9. Modularity (Component)	2
10. Durability	2
11. Bulkiness/Aesthetic	0

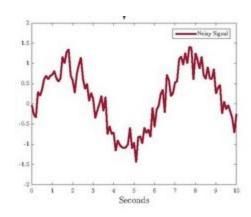
Nikolya Cadavid 21

Establishing Design Inputs

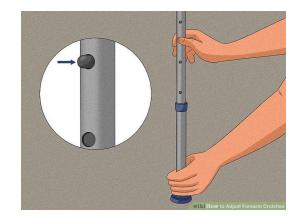

Andrew Baumert

Existing Solutions

The X10 Knee Recovery System™



Andrew Baumert 23



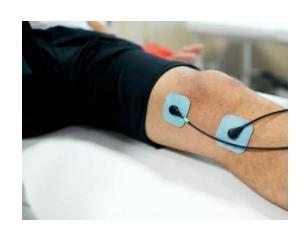
Design Inputs and Function Bases

- Data Acquisition
 Mechanical
 - Mechanical Assistance/Resistance
- Modularity

Andrew Baumert

FAMIU-FSU

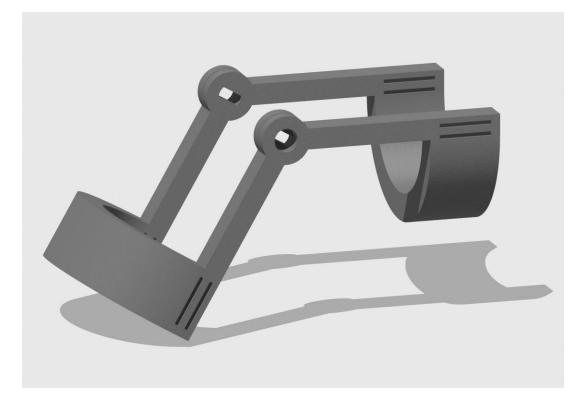
College of


Engineering

Design Inputs and Function Bases

Safety

- Electrical Stimulation
- Comfortability



FAMU-FSU College of Engineering Andrew Baumert 25

Additional Objectives

- Meet with Class TA for a Progress Check
- CAD Simple Prototype

Andrew Baumert 26

Mechanical Progress

Aaron Gonzalez

Mechanical Progress

- Assistive / Resistive features
 - Adjustable Assistance
 - Personalized Resistance Levels

Passive and Active Components

Mechanical Progress

- Frame Design
 - Lightweight Material
 - Adjustable Fit
- Control System for Mechanical Components
 - Motor Control
- Modularity and Attachments
 - Customizable Components

Aaron Gonzalez 29

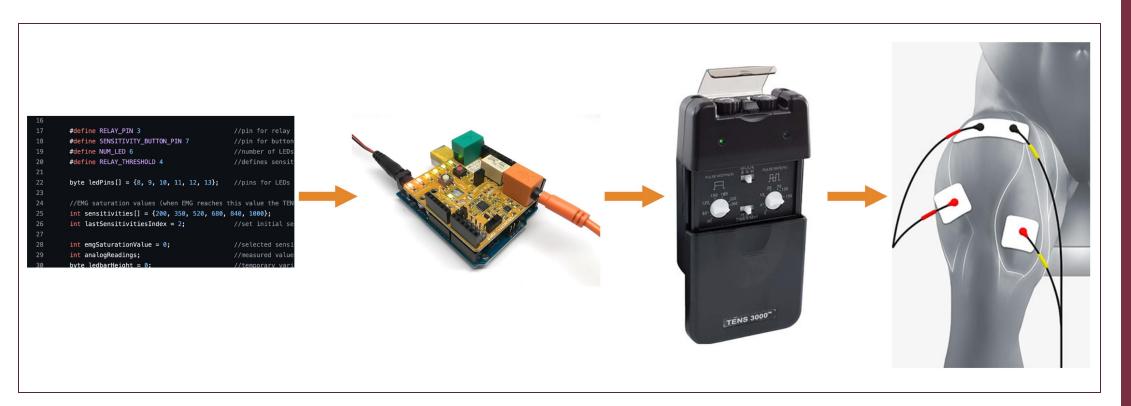
Next Steps for Mechanical Development

Refining CAD Model

Improving Adjustability

Integrate Motors and Springs

Consider Safety Improvements


Aaron Gonzalez 30

E-Stim Progress

Arianna Escalona

E-stim Progress

Human-Human Interface Kit

Arianna Escalona 32

Parameter	TENS (for pain relief)	NMES (for Quadriceps Activation)
Pulse Frequency (Hz)	Typically 50-150 Hz	Typically 30-80 Hz
Intensity (Amplitude)	Low to moderate	High
Pulse Duration (μs)	50-100 μs	200-400 μs
Waveform		
Target Nerves	Sensory nerves	Motor nerves
Duration of Use	Longer sessions (30-60 minutes per session)	Shorter sessions (10-30 minutes per session)

Next Steps for E-Stim Development

Testing TENS Unit Understand Circuit Design Meet with Expert **Review FDA Guidelines Consider Power Options**

Arianna Escalona 34

Thank you!

References

- •Brett Sears, P. (2023, February 16). 6 types of electrical stimulation used in PT. Verywell Health.
- https://www.verywellhealth.com/estim-use-in-physical-therapy-2696490
- Exoskeleton and exosuits in the workplace: Amtrust Financial. AmtrustFinancial. (n.d.).
- https://amtrustfinancial.com/blog/loss-control/exoskeleton-and-exosuits-in-the-workplace
- •Gb-Bossm. (2022, May 4). Why do I get "stimulated" during physical therapy? Boston Sports Medicine.
- https://www.bostonsportsmed.com/2015/09/electric-stimulation-physical-therapy/
- •GUIDE: Physical therapy guide to knee pain. Choose PT. (2020, September 22).
- https://www.choosept.com/guide/physical-therapy-guide-knee-pain
- •Knee extension. (n.d.). https://www.axelgaard.com/App/Anatomy/Knee
- •Ko, D. (2017, October 17). Katerina Kamprani designs sublimely dysfunctional everyday objects. Intro to
- Cinema 4D for Designers. https://www.3dfordesigners.com/blog/katerina-kamprani-the-uncomfortable
- •Ladenburg, T. (2023, July 17). Biodex isokinetics orthorehab physical therapy. OrthoRehab Physical Therapy
- Physical Therapy in Northwestern Montana. https://orthorehab.com/services/biodex-isokinetics/
- •Neo 550 Brushless Motor. REV Robotics. (n.d.-a). https://www.revrobotics.com/rev-21-1651/
- •Neo Vortex Brushless Motor. REV Robotics. (n.d.-b). https://www.revrobotics.com/rev-21-1652/

References Continued

- *Passive exoskeleton*. Exoskeleton Report. (n.d.). https://exoskeletonreport.com/type-of-exoskeleton/passive/
- Peter. (n.d.). Freedom key assists: Pack of 3: Arthritis key turner AIDS. The Wright Stuff, Inc. | ArthritisSupplies.com. https://www.arthritissupplies.com/dynatomy-key-assists-pack-of-3.html
- Pfeffer, S. E. (2023, May 12). Al Roker shares video of him moving around the hospital 1 day after knee replacement surgery: "up and walking." People.com. https://people.com/health/al-roker-walks-1-day-after-knee-surgery-in-video/
- A sample graph to illustrate topic detection technique. the graph is... | download scientific diagram. (n.d.). https://www.researchgate.net/figure/A-sample-graph-to-illustrate-topic-detection-technique-The-graph-is-formed-in-the-fig1-309775588
- Smith, D. G. (2021, July 6). What to look for in a physical therapist. The New York Times. https://www.nytimes.com/article/physical-therapist-search.html
- "GUIDE: Physical Therapy Guide to Knee Pain." Choose PT, APTA, 22 Sept. 2020
- Amazon.com: Elbow Brace Compression Sleeve for Men & Women (1 pair), arm support sleeves forearm pain relief pads braces for tendonitis, Tennis & Golfers Elbow Treatment, arthritis, workout, Weight Lifting: Health & Household. (n.d.-b). https://www.amazon.com/Compression-Support-Tendonitis-Treatment-Arthritis/dp/B09C4L23QS

Binary Pairwise Comparison

Binary Pairwise Comparison												
Customer Requirements	1	2	3	4	5	6	7	8	9	10	11	IWF:
1. Biomechanically Acc.	1	1	1	1	1	1	1	1	1	1	1	10
2. Adjustability (Fitting)	0	1	1	1	1	0	0	1	1	1	1	7
3. Modularity (Component)	0	0	1	0	1	0	1	0	0	0	0	2
4. Durability	0	0	1	-	1	0	0	0	0	0	0	2
5. Bulkiness/Aesthetic	0	0	0	0	1	0	0	0	0	0	0	0
6. Mechanical Rehab	0	1	1	1	1	-	1	1	1	1	1	9
7. Electrical Rehab	0	1	0	1	1	0	-	1	1	1	1	7
8. Cost	0	0	1	1	1	0	0	1	0	0	0	3
9. Comfort/Pain reduction	0	0	1	1	1	0	0	1	-	0	0	4
10. Data Acquisition	0	0	1	1	1	0	0	1	1	1	1	6
11. Ease of Use	0	0	1	1	1	0	0	1	1	0	1	5
Total:	0	3	8	8	10	1	3	7	6	4	5	

