

ExoFlex Team 102

February 18, 2025

Introduction

Joseph Liberato Biomedical Engineer

Nikolya Cadavid Mechanical Engineer

Kyle Giddes Mechanical Engineer

Andrew Baumert Biomedical Engineer

Aaron Gonzalez Biomedical Engineer

Arianna Escalona Biomedical Engineer

Joseph Liberato

Joseph Liberato

Sponsors and Advisors

Academic Advisor Shayne McConomy Professor

<u>Academic Advisor</u> Stephen Hugo Arce *Professor and Sponsor*

Engineering Mentor Taylor Higgins Point of Contact & Advisor

Joseph Liberato

Objective

The objective of this project is to develop a device that enhances the rehabilitation process for patients who have undergone total knee replacement (TKR) by providing mechanical resistance and electrical stimulation, intended for supervised use within established recovery protocols.

Total Knee Replacements (TKRs)

Impact of a TKR

Joseph Liberato

Joseph Liberato

Rehabilitation After TKR

Isometric Exercise: Terminal Knee Extensions

Joseph Liberato

The Standard of Early Recovery

Continuous Passive Motion (CPM) Machine

Limits of Continuous Passive Motion Machine

T. A. Lenssen, M. J. van Steyn, Y. H. Crijns, et al., "Effectiveness of prolonged use of continuous passive motion (CPM), as an adjunct to physiotherapy, after total knæ arthroplasty," BMC Musculoskelet. Disord., vol. 9, no. 60, 2008. Available: https://doi.org/10.1186/1471-2474-9-60 FAMU-FSU College of Engineering

Joseph Liberato

X10 Knee Machine

FAMU-FSU College of Engineering

Joseph Liberato

10

Joseph Liberato

Existing Devices

HAL Single Joint

Adjustable Design Safety

Electrical Stimulation

Data Aquisition Convenience

Adjustable Design Safety

Electrical Stimulation

Data Aquisition Convenience

Kyle Giddes

The Targets of Mechanical Design

Controlled, limited natural motion

Restrict lateral motion

τ

~10 Nm of torque at the joint

Kyle Giddes

Assembled Prototype

Motion Constraints

Natural motion 0° to 120°

Motion Constraints

Lateral motion from 0 ± 2° will be restricted

Kyle Giddes

Primary Exercise

• Leg extension exercise strengthens the patellar tendon and quadricep muscle

 Force needed: Adjusted relative to the patient's body weight and phase of recovery, but 10 lbf is a "good start point"

-Dr. Emily Eastburg, FSU PT

FAMU-FSU College of Engineering

Kyle Giddes

Kyle Giddes

Torque Equation

- F = Force applied (N)
- d = distance from the axis of rotation (m)
- θ = angle of force applied to shank = 90°
- τ = torque of the motor (Nm)

$$\tau = F \cdot d \cdot \sin(\theta) \approx 10 \, Nm$$

$$F = \frac{\tau}{d} = 50 N \approx \mathbf{11.2} \, lbf$$

$$f = 0.2 m$$

Kyle Giddes

Adjustable Shank

Motor Specifications

- Active actuator system
- Integrated encoder
- Versatile usage
 - Isometric: Tension w/o lengthening
 - Eccentric: Lengthening of muscle
 - **Concentric: Shortening of muscle**
- Rated torque: 10 Nm
- Stall torque: 25 Nm
- Operating voltage: 48V

Material Selection

- 3D print using Nylon 12
- Nontoxic and Biocompatible
- Formlabs Fuse 1+ printer at Innovation Hub
- Batting material/leather for human contact

Next Steps for Mechanical Design

Physical Construction

Final 3d print and sew padding

Motor Control

Design the motor control system for leg movement and exercise.

Integrate E-Stim

Add physical connections of e-stim components to the device.

Adjustable Design Safety

Electrical Stimulation

Data Aquisition Convenience

Aaron Gonzalez

Aaron Gonzalez

The Targets of E-Stim

Aaron Gonzalez

Neuromuscular Electrical Stimulation (NMES)

Adjustable Design Safety

Electrical Stimulation

Data Aquisition Convenience

Aaron Gonzalez

The Targets of Data Acquisition

Measuring Muscle Recovery

Set up for Maximum Voluntary Contraction

EMG Signal from Circuit Output

Aaron Gonzalez

Capturing and Processing the Signal

Example Data Acquisition Protocol

Better Rehab Outcomes

Faster Recovery Time

Personalized Rehab Plans Based on Data

Increased Patient Engagement

Aaron Gonzalez

Next Steps for ExoFlex

Systems Integration

Plan for integration of mechanical, electrical, and data acquisition aspects.

Testing

Undergo safety and performance testing.

Control System

Simulate the system and test control strategies.

"Act as if what you do makes a difference. It does."

- William James

