

Psyche Additive Manufacturing

Team 501 - DR 4

Team Introductions

Asael Caballero Reyes Thermal Engineer Jack DiBenedetto Systems Engineer Rafe Erisman Mechatronics Engineer Derek Jacobson CAD Engineer Joshua Pruitt Material and Design Engineer Canaan St Lewis Astronautical Engineer

Sponsor and Advisor

Dr. Cassie Bowman Sponsor

Dr. Dorr Campbell Advisor

Objective

The objective of this project is to design a method to utilize hypothesized surface materials of the Psyche asteroid in additive manufacturing.

Psyche Mission

- Psyche is an M-type asteroid hypothesized to be a remnant from a planetesimal.
- In 2023, NASA sent a spacecraft to observe Psyche's surface set to arrive in 2029.
- The surface of Psyche is rich in metallic and silicate materials.
 - o Particularly iron and nickel

Project Overview

Design and demonstrate a proof of concept of intellectual merit

Design full additive manufacturing concept using intellectual merit Integrate system into hypothetical future missions

Assumptions

Print Ready Material

• Surface material will be harvested and refined to necessary specifications

External Power Source

Sufficient power will be provided externally

Repairability

• The system will be maintained by an external system

Product Delivery

• An external mechanism will be responsible for removing print

Functional Decomposition

Critical Targets and Metrics

Function	Target	Metrics
Minimize vibrations	<20 Hz	Frequency
Shield system from radiation	<0.02 rads/s	Allowable Dose Rate
Protects system from particulates	<0.015 µm 0.3 /liter (Electronics) <1.0 µm 10 /liter (Moving Parts)	Particle Size Count per Liter
Regulates temperature	-55 – 125 ℃	Temperature Range
Produces desired output	0.5 mm	Output Tolerance
Design mass	1650 kg	Mass
Print volume	>8 Liters (0.2 <i>m</i> ³)	Volume

Initial Concept Generation

Fused Granulate Fusion

- An adaptation of standard FGF printers
- Uses conventional heating elements to melt extrudate into a filament-like material
- Uses metal powder in place of plastic

Powder Bed Fusion

- Uses powerful laser to selectively melt layers of metal powder
- Use electromagnets keep powder fixed within the print volume

Design Selection

Powder Bed Fusion

- Concept with the most potential for adaptation to Psyche conditions
- Precise

Challenges

- Managing the internal environment of the system
- Compensating for microgravity
- Preventing powder suspension

Powder Bed Fusion in action

Magnet Selection/Sizing

Magnetic Bed

- Reduced field strength and magnetic attraction
- Clumping

Helmholtz Coil

- Uniform Magnetic Field
- Precise Control
- Allows for material adaptability

Magnet Selection/Sizing

$$B = \left(\frac{4}{5}\right)^{3/2} \frac{\mu_0 \boldsymbol{n} \boldsymbol{I}}{\boldsymbol{R}}$$

B : Magnetic Force at midpoint between the coils *B* :

μ_0 : Permeability of free space	μ_0 : Constant
n : Number of coil turns	<i>n</i> :
<i>I</i> : Current through the coils	<i>I</i> : 20 Amps
R : Radius of each coil	<i>R</i> : 0.4 meter

Magnet Assisted Granular Iron Control

Future Work

- Digital Twin
- Physical Prototype
- Power Safety

- Cost Analysis
- Simulations
- Magnet Testing

Contact Us

References

"Asteroid 16 Psyche: Psyche Mission - A Mission to a Metal World." Psyche Mission, 13 Sept. 2023, <u>psyche.asu.edu/mission/the-asteroid/</u>.

"Psyche - NASA Science." NASA, NASA, science.nasa.gov/mission/psyche/. Accessed 8 Oct. 2024.

Vedaraman, Sekar, et al. "How NASA's Psyche Mission Will Explore an Unknown World We Can Barely Pinpoint from Earth." SciTechDaily, 5 Oct. 2024, <u>scitechdaily.com/how-nasas-psyche-mission-will-</u> <u>explore-an-unknown-world-we-can-barely-pinpoint-from-earth/</u>.

"NASA Psyche Mission." Design and Copy Guidelines, 1 June 2020, <u>psyche.asu.edu/wp-</u> <u>content/uploads/2018/03/20200528 Psyche BrandGuide-v2 6.1 20 rev-.pdf</u>.