

Virtual Design Review 6 Team 505

-

Danfoss Stepper Motor Lifecycle Fixture

Team Introductions

Albert Auer Mechanical Design Engineer

Chaney Bushman Manufacturing and Test Engineer

Joseph Garvie Systems Engineer

Mason Herbet CAD Designer

Engineer

Sponsor and Advisors

<u>Sponsor</u> Cole Gray Senior Mechanical Design Engineer <u>Academic Advisor</u> Patrick Hollis, Ph.D. Associate Professor & Undergraduate Coordinator

<u>Academic Advisor</u> Shayne McConomy, Ph.D. Senior Design Professor

Albert Auer

Project Description

The objective of this project is to design and produce a stepper motor lifecycle test fixture for Danfoss Turbocor to improve user-friendliness and reliability over their current testing procedure.

Lifecycle Test

What is it?

 A stepper motor lifecycle test aims to evaluate the expected lifespan and reliability of the motor under typical operating conditions.

Why does Danfoss use it?

- Quality control
- Customer Confidence
- Varied Motor Manufacturers

Proposed Lifecycle

Actual Lifecycle

FAMU-FSU College of Engineering

Albert Auer

Albert Auer

Customer Needs

One Direction Test

Runs continuously in one direction (CW CCW)

Alternating Test

Switches direction after a designated cycle time

Orientation

Motor is oriented downwards (similar to assembly)

Targets & Metrics

Adjust Cycle Time (0-300sec)

Adjust Speed (0-300pps)

Track Rotations (>98% Acc)

- Constant speed (pulses per second)
- Constant resistance torque (N-m)
- Run until failure (motor cannot rotate)
- Track total runtime and total rotations

Starting Point

Perma-Tork

Uses permanent magnets to apply a constant torsional load to the central shaft

Reasons to Use:

- Eliminates unnecessary friction
- Requires no power supply
- Allows manual torque adjustment

Albert Auer

Helical Coupler

Uses two set screws to fasten the Stepper motor shaft and the Perma-tork shaft

Reasons to Use:

- Accommodates for axial misalignment
- Securely couples the Perma-tork and stepper motor
- Proper power transmission

Albert Auer

The H-Frame Concept

Chaney Bushman

Prototype Stage 1

Chaney Bushman

FAMU-FSU College of Engineering

Prototype Stage 2

Chaney Bushman

Team 505

Prototype Stage 2

mounting holes

Chaney

Bushman

Final Stage

Chaney Bushman

Main Electronics

FAMU-FSU College of Engineering

Mason Herbet

HMI Features

Green/Red LEDs

Show when test is running/stopped

Rotary Encoder

Navigate testing menu, adjust test variables, and start/stop test

LCD Screen

Display test parameters, current test variables, and test results

Mason Herbet

External Wiring

Power Jack

12V AC/DC Power Converter plugs into a panel-mounted port on HMI

Molex Connector

8-pin, Circular Molex connector combines magnetic sensor and motor wires to a panel-mounted port on the HMI

Screw-in Terminals

Include wires from power source, Molex connector, and LEDs

Header Pins

Header Pins connect LCD and Rotary Encoder to PCB and PCB to Arduino

18

Mason Herbet

Mason Herbet **Internal Wiring** LCD Display Magnetic Stepper Sensor Motor 0000 10 0 6 6 6 LEDs Rotary Encoder

Molex Wiring

Power Input

19

HMI Parts

Team 505

Pre-Test Menu

20

Pre-Test Menu

Input Parameter 1/2:

- > Speed: 88 ppsNext Parameter
 - Back <-

Pre-Test Menu

One Direction Test

Input Parameter 2/2: > Direction: CW Start Test Back <-

Alternating Direction Test

Input Parameter 2/2:
> Cycle Time: 120 s
Start Test
Back <-</pre>

Arduino Internal Clock

Difference-Based Timers

Current – Last Event >= Event Time Time Interval

Bradford Andrews

Team 505

Actuate Motor

A4988 Stepper Motor Driver

- Step
- Direction

Last Step

Direction

OhterDatentgoDirTeestion Test

• **Constant (User Input: CW/CCW)**

Last Direction Change Half Cycle Time (ms)

Step Interval (µs)

Derived from User Input:

Speed (pps)

Detect Rotation/Failure

Rotation

Interrupt Triggered - Rotation Counted

Failure

3144E Magnetic Sensor

Time

- Senses magnet • attached to coupler
- Connected to interrupt pin

Last Rotation

Rotation Detected (Interrupt)

2*ERT 3*ERT Alt. Dir. One Dir. Expected Rotation Time Derived transfer input speed (pps)

Display Results

Post-Test Menu

Testing and Validation Power & Current Draw

Current and Power consumption decrease with increasing motor speed

FAMU-FSU College of Engineering

Joseph Garvie

Team 505

Testing and Validation Fixture Specs

State	Current (A)	Power (W)	Notes		
Operating (88 PPS)	0.42	5.04	Test Running		
Idle (Motor Off)	0.13	1.56	Standby State		
Table 1: Fixture Power Consumption					

Table 1: Fixture Power Consumption

Characteristics	Metric (SI)	US Customary			
Weight	5.44 kg	12 lb			
Volume	20970 cm ³ (0.02 m ³)	1280 in ³ (0.74 ft ³)			

Table 2: General Characteristics

Joseph Garvie

Joseph Garvie

Testing and Validation

Rotation Tracking Error

	Time 1 20 hr 39 min 0 sec	Time2 20 hr 55 min 35 sec	Time3 22 hr 01 min 48 sec
Rotations Tracked by sensor	4574	4633	4876
Expected number of rotations	4543	4604	4847
Rotation Tracking Error	0.68 %	0.63 %	0.61 %

> 99% rotation tracking accuracy

Rotations tracked slightly larger than what we expect

Testing and Validation Rotation Times (Validation)

Single Shaft Rotation Time by PPS

Rotation Time vs Resistance Torque (88 PPS)

Single shaft rotation time decreases with increasing PPS

Single shaft rotation time constant across increasing resistance torques

~3.7 rpm at 88 PPS across all resistance torques

Testing and Validation

Fixture Run Cost Breakdown

Assumptions:

- 1. Tallahassee Electricity Energy Rate (Commercial)* = 0.10883 $\frac{3}{kWh}$
- 2. Stepper Motor Lifespan (Approx.): 9 months (270 Days)

Energy Consumption:

$$\frac{\overline{6 W} \times 24 hrs}{1000 \frac{W}{kW}} = 0.144 \frac{kWh}{Day}$$

Daily Cost:

0.144
$$\frac{kWh}{Day} \times 0.11 \frac{\$}{kWh} = 0.02 \frac{\$}{Day} = 2 \frac{¢}{Day}$$

Total Lifecycle Cost:

$$60 \frac{\text{c}}{Month} \times 9 Months = 540 \frac{\text{c}}{Motor} = \$5.40$$

Conclusion:

It costs \$5.40 to run a full lifecycle test on one stepper motor at maximum power. Joseph Garvie

<u>https://www.talgov.com/you/you-account-plans-index</u>

Updated Budget

Expected Future Costs

- Hardware and Sensors for building more fixtures
- APC Backup UPS with Surge Protection

Joseph Garvie

Team 505

Apply magnetic

shielding material

Future Work

Trim Extraneous Wires

> Order and replicate fixture components

Attach handles for ergonomics

Finalize build and operation documents

> FAMU-FSU College of Engineering

Joseph Garvie