

Team 507: Southeast Con VDR 2

Kelsey Gross, Ian Lemler, Luiz Santos, Eric Strawn

Ian Lemler

Sponsors and Advisors

Dr. Oscar Chuy

Dr. Johnathan Clark

FAMU-FSU College of Engineering

Meet the Team

Kelsey Gross

Ian Lemler

Luiz Santos

Eric Strawn

Ian Lemler

• The objective of this project is to design, develop, and compete with a working robot that allows for the collection of different types of astral materials and optimizes point scoring.

Ian Lemler

Project Description

- Regional Competition for the Southeast States
- Design, build, test, and program a fully autonomous robot

5

- 3 Minutes to complete all tasks
- Collect astral materials and store them
- Work with ECE departments team

The Game Field

Ian Lemler

Ian Lemler

Targets and Metrics

7

Targets – Collection Mechanism

Function	Target	Metric
Detect Objects	Materials are detected within a 20 cm radius with 95% accuracy	% of materials detected
Grip Objects	90% collection success rate	% of materials supported
Detection and Collection Integration	Less than 2 seconds between material detection and collection start	Tested in software portion of robot (time between code portions)

Targets – Sorting Mechanism

Function	Target	Metric
Differentiate Materials	Able to differentiate between materials with a 90% accuracy	Field test to determine accuracy (percentage)
Separation	Separates different materials with 75% accuracy	Field test to determine accuracy (percentage)

lan Lemler

Targets – Navigation

Function	Target	Metric
Work in Cave	Operate at 85% efficiency of robot outside the cave	Compare to all targets outside of the cave
Autonomous	Operate autonomously for 3 minutes before being turned off	Timer to measure operation time (minutes)
Detect LED	Robot moves within 2 seconds of LED light being turned on	Timer to measure start time after LED (seconds)

Targets – Structure, Power, and User Interaction

Function	Target	Metric
Meets Weight Requirement	Less than 12 kg	Weight scale
Emergency Stop capabilities	Power to 0V	Voltmeter
Support Weight	Support up to 15 kg and operate normally	Weight scale
Generate Power	5-24V for at least 4 minutes	Timer to measure how long the battery can support all functions of the robot

Ian Lemler

Critical Targets

- Weigh less than 12 kg and support up to 15 kg
- All power goes to OV upon activation of emergency stop
- Battery generates enough power to support necessary systems for the duration of the game (3-4 minutes)
- Robot collects and supports objects with a 90% success rate
- Robot detects LED light within 2 seconds to ensure optimal start speed

Point Potential

Task	Points
Out of the Landing Site	5
Out of the Landing Site within 3 Seconds	5
In the Cave (First Time)	15
Cosmic Shipping Container in Non-Telemetry Rendezvous Pad	15
Cosmic Shipping Container in Telemetry Rendezvous Pad	30
Astral Material supported by the Robot Unit (each)	1
Astral Material in wrong Shipping Container (each)	2
Nebulite in Nebulite Cosmic Shipping Container	5
Geodinium in the Geodinium Cosmic Shipping Container	e
Team Beacon has at least some portion in the Beacon Mast	40

Kelsey Gross

Point Optimization

Ideal Plan	Points	Nebulite CSC Start
Out of the Landing Site	5	
Out of the Landing Site within 3 Seconds	5	
In the Cave (First Time)	15	Pad 3 02 0 2 1 2 2
Cosmic Shipping Container in Telemetry Rendezvous Pad	30	
Geodinium in the Geodinium Cosmic Shipping Container		
Team Beacon has at least some portion in the		
Beacon Mast	40	Pad 0 5 ke
In the Cave Points Gained	52	
Out of the Cave Points Gained	88	
Total:	235	Geodinium CSC Start ——/

Kelsey Gross

Concept Generation

15

Compactor

Multi Conveyer

Band Box Bot

Magnetic Bulldozer

FAMU-FSU College of Engineering

Robotic Claw

Frank

Clamp and Lift

Ian Lemler

Concept Selection

24

Binary Pairwise Comparison

Customer Requirement	IWF
Under 12 kg	4
Starts with LED	7
Size Constraint Followed	4
Battery Powers Robot	8
IR Camera works in Cave	1
Intakes Material	7
Reads April Tag	4
Feedback System	6
Autonomous	9
Detect Materials	4
Sort Materials	1

House of Quality

Engineering Characteristic	Raw Score	Rank Order
Weight	72	7
Voltage From Power Supply	722	7
Stability	59	10
Time to Move	63	9
Time to Complete Collection	76	6
Volume	126	3
Time to Place Beacon	160	2
Time to Place Bins	55	11
Sensors	201	1
Speed of Shutoff	54	12
Mobility	94	4
Wheel Torque	93	5

Pugh Charts

					Con	cepts						
Engineering Characteristics	Datum	1	2	3	4	5	6	7	8	1	Compactor	
Weight		+	S	+	+	S	+	S	S	2	Multi-Conveyor	
Voltage from Power Supply		S	-	S	S	-	-	-	S	3	Lazy Hercules	
Stability		+	S	+	+	-	-	+	+	4	The Band Box Bot	
Time to Move		+	+	+	-	-	-	S	S	5	Magnetic Bulldozer	
Time to Complete Collection		-	+	+	-	-	-	S	-	6	Robotic Claw	
Volume		+	S	+	S	S	S	-	+	7	Frank	
Time to Place Beacon		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	Clamp and Lift	
Time Place Bins		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Sensors		S	S	S	S		-	+	S		High Fidelity	
Speed of Shutoff		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		Medium Fidelity	
Mobility		+	S	+	+	-	-	-	S			
Wheel Torque		+	+	+	+	-	S	-	S		Datum: Nothing But Net Robot	
											Eliminated	
# of pluses		6	3	7	3	0	1	2	2			
# of minuses		1	1	0	2	7	6	4	1			

			Con	cepts				
Engineering Characteristics	4	1	2	3	8	1	Compactor	
Weight		-	-	S	S	2	Multi-Conveyor	V
Voltage from Power Supply		-	+	+	S	3	Lazy Hercules	V
Stability		-	+	÷	+	8	Clamp and Lift	V
Time to Move		+	+	+	+			
Time to Complete Collection		-	+	+	+	4	The Band Box Bot	DATUM
Volume		S	-	S	S			
Time to Place Beacon		+	+	+	+		Selected:	
Time Place Bins		+	+	+	-	1	3	
Sensors		-	+	S	S	2	2	
Speed of Shutoff		S	S	S	S	3	8	i.
Mobility		+	S	S	-			
Wheel Torque		-	S	S	S			
# of pluses		4	7	6	4			
# of minuses		6	2	0	2			

FAMU-FSU College of Engineering

lan Lemler

Pugh Chart 1 - Results

1	Compactor	\checkmark
2	Multi-Conveyor	\checkmark
3	Lazy Hercules	\checkmark
4	The Band Box Bot	\checkmark
5	Magnetic Bulldozer	
6	Robotic Claw	
7	Frank	
8	Clamp and Lift	\checkmark
8	Clamp and Lift	\checkmark
8	Clamp and Lift High Fidelity	
8	Clamp and Lift High Fidelity Medium Fidelity	
8	Clamp and Lift High Fidelity Medium Fidelity	
8	Clamp and Lift High Fidelity Medium Fidelity Datum: Nothing But Net Robot	

Pugh Chart 2 - Results

1	Compactor	
2	Multi-Conveyor	\checkmark
3	Lazy Hercules	
8	Clamp and Lift	$\overline{}$
4	The Devil Dev Det	DATIM
4	The Band Box Bot	DAIUM
4	The Band Box Bot	DAIUM
4	Selected:	DAIUM
4	Selected:	DAIUM
4 1 2	Selected: 3 2	DAIUM

Ian Lemler

Criteria	Sum	Normalized
Weight	60.03	0.215
Voltage from power supply	60.53	0.159
Stability	45.68	0.111
Time to move	5.03	0.019
Time to complete collection	24.34	0.060
Volume	58.00	0.194
Time to place beacon	7.30	0.021
Time to place bins	9.70	0.026
Sensors	30.77	0.073
Speed of shutoff	15.58	0.038
Mobility	16.42	0.040
Wheel torque	18.42	0.044

Ian Lemler

Testing

31

Concept 1

- Proof of drive train concept
- Give a visual representation of start size constraint in the X and Y axis

Concept 2

- Validate Lazy Hercules intake methodology
- Test whether the magnets in the Geodinium was strong enough to stick to steel
- Allow for spec-ing of motors for the conveyor belt to be done and validated

Prototype 1

Prototype 2

Completed Work

RESEARCH PAST DESIGNS THAT WORKED FOR OTHER TEAMS

FINISH CONCEPT GENERATION AND SELECTION

BUILD FIRST PROTOTYPE WITH CARDBOARD

Ian Lemler

Future Work

CREATE FULLY FUNCTIONAL PROTOTYPE BY END OF SEMESTER

ITERATE ON FUNCTIONAL PROTOTYPE

