
Problem Sets

Engineering Lab

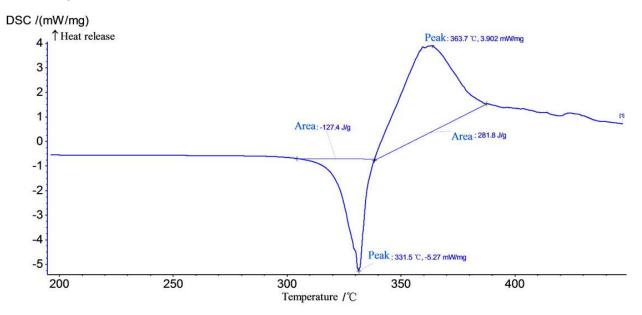
- 1. Define the following terms: glass transition temperature, melting, crystallization, decomposition
- 2. Identify the glass transition, melting, and crystallization temperature in the following diagram

3. Which thermal processes would apply to a metallic substance?

Mass and Energy Balances I

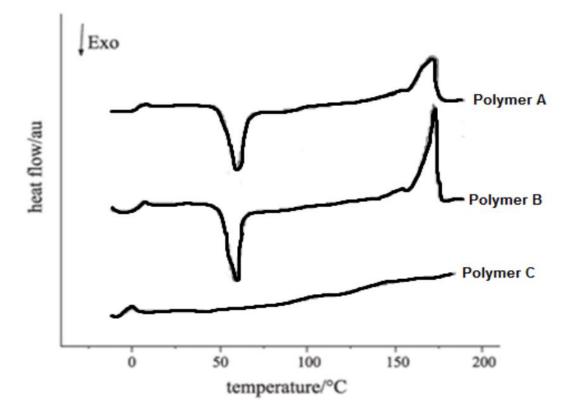
Sample	Chemical Formula	$T_{m}(\mathbf{K})$	ΔH _{fusion} (kJ/mol)	ΔS _{fusion} (J/mol K)
Cyclohexane	C ₆ H ₁₂	279.6	2.68	9.57
Dodecane	CH ₃ (CH ₂) ₁₀ CH ₃	263.5	36.8	161.5
Octadecane	C ₁₈ H ₃₈	301.0	60.8	203.6
Table 1. The accepted value are from the NIST database.				

- 1. Determine the relationship between the entropy of fusion and the molecular weight of a hydrocarbon.
- 2. From the relationship established in question 1, predict the ΔS_{fusion} and ΔH_{fusion} for Octane (C₈H₁₈). The entropy of fusion is calculated by utilizing the following equation:


$$\Delta S_{fusion} = \frac{\Delta H_{fusion}}{T_m}$$

Mass and Energy Balances II (Note will gather data for polyethylene)

- 1. If the molecular weight of polyethylene was increased to 70,000 what would be the effect on the T_g, T_m, and T_c.
- 2. If the heat of fusion for 100% crystalline polyethylene is 68.4 cal/g (Bernhard Wunderlich, 1967) what would be the degree of crystallinity for the polyethylene used in the lab. The degree of crystallinity can be calculated as:


 $\% Crystallinity = \frac{\Delta H_{experimental}}{\Delta H_{theoretical}}$

Thermodynamics

- 1. Identify the exothermic and endothermic processes in the DSC diagram shown above.
- 2. Determine the entropy and gibbs free energy for each peak pictured above if the substance shown above is Benzene.
- 3. Calculate the total energy change for the two processes for a benzene sample weighing 100 mg.

Polymers/Materials

- 1. Identify the thermal transitions of each polymer and determine the temperature of the transition.
- 2. For a process that requires a high impact toughness and high mechanical strength, determine the polymer that would be most suitable for this application.
- 3. Now assume that Samples a-c are all the same polymer that have been processed differently. Which of these was cooled the most quickly from the melted state? Explain your reasoning based on the graph above.